151765-Thumbnail Image.png
Description
An imaging measurement technique is developed using surface plasmon resonance. Plasmonic-based electrochemical current imaging (P-ECi) method has been developed to image the local electrochemical current optically, it allows us to measure the current density quickly and non-invasively [1, 2]. In

An imaging measurement technique is developed using surface plasmon resonance. Plasmonic-based electrochemical current imaging (P-ECi) method has been developed to image the local electrochemical current optically, it allows us to measure the current density quickly and non-invasively [1, 2]. In this thesis, we solve the problems when we extand the P-ECi technique to the field of thin film system. The P-ECi signal in thin film structure was found to be directly proportional to the electrochemical current. The upper-limit of thin film thickness to use the proportional relationship between P-ECi signal and EC current was discussed by experiment and simulation. Furthermore, a new algorithm which can calculate the current density from P-ECi signal without any thickness limitation is developed and tested. Besides, surface plasmon resonance is useful phenomenon which can be used to detect the changes in the refractive index near the gold sensing surface. With the assistance of pH indicator, by applied EC potential on the gold film as the working electrode, the detection of H2 evolution reaction can be enhanced. This measurement technique is useful in analyzing local EC information and H2 evolution. References [1] S. Wang, et al., "Electrochemical Surface Plasmon Resonance: Basic Formalism and Experimental Validation," Analytical Chemistry, vol. 82, pp. 935-941, 2010/02/01 2010. [2] X. Shan, et al., "Imaging Local Electrochemical Current via Surface Plasmon Resonance," Science, vol. 327, pp. 1363-1366, March 12, 2010 2010.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Plasmonic-based imaging detection of chemical reactions
    Contributors
    Date Created
    2013
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2013
    • bibliography
      Includes bibliographical references (p. 42-46)
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Yen-Chun Chao

    Machine-readable links