Full metadata
Title
Fully automated radiation hardened by design circuit construction
Description
A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on both layout techniques that mitigate total ionizing dose (TID) and latchup issues and flip-flop designs that mitigate single event transient (SET) and single event upset (SEU) issues. The base TMR self-correcting master-slave flip-flop is described and compared to more traditional hardening techniques. Additional refinements are presented, including testability features that disable the self-correction to allow detection of manufacturing defects. The circuit approach is validated for hardness using both heavy ion and proton broad beam testing. For synthesis and auto place and route, the methodology and circuits leverage commercial logic design automation tools. These tools are glued together with custom CAD tools designed to enable easy conversion of standard single redundant hardware description language (HDL) files into hardened TMR circuitry. The flow allows hardening of any synthesizable logic at clock frequencies comparable to unhardened designs and supports standard low-power techniques, e.g. clock gating and supply voltage scaling.
Date Created
2012
Contributors
- Hindman, Nathan (Author)
- Clark, Lawrence T (Thesis advisor)
- Holbert, Keith E. (Committee member)
- Barnaby, Hugh (Committee member)
- Allee, David (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
x, 102 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.15918
Statement of Responsibility
by Nathan Hindman
Description Source
Viewed on Sep. 4, 2013
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2012
bibliography
Includes bibliographical references (p. 97-102)
Field of study: Electrical engineering
System Created
- 2013-01-17 06:36:53
System Modified
- 2021-08-30 01:44:03
- 3 years 2 months ago
Additional Formats