151329-Thumbnail Image.png
Description
During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments hel

During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set. The 16 run regular fractional factorial designs for six, seven and eight factors are in common usage. These designs allow clear estimation of all main effects when the three-factor and higher order interactions are negligible, but all two-factor interactions are aliased with each other making estimation of these effects problematic without additional runs. Alternatively, certain nonregular designs called no-confounding (NC) designs by Jones and Montgomery (Jones & Montgomery, Alternatives to resolution IV screening designs in 16 runs, 2010) partially confound the main effects with the two-factor interactions but do not completely confound any two-factor interactions with each other. The NC designs are useful for independently estimating main effects and two-factor interactions without additional runs. While several methods have been suggested for the analysis of data from nonregular designs, stepwise regression is familiar to practitioners, available in commercial software, and is widely used in practice. Given that an NC design has been run, the performance of stepwise regression for model selection is unknown. In this dissertation I present a comprehensive simulation study evaluating stepwise regression for analyzing both regular fractional factorial and NC designs. Next, the projection properties of the six, seven and eight factor NC designs are studied. Studying the projection properties of these designs allows the development of analysis methods to analyze these designs. Lastly the designs and projection properties of 9 to 14 factor NC designs onto three and four factors are presented. Certain recommendations are made on analysis methods for these designs as well.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Projection properties and analysis methods for six to fourteen factor no confounding designs in 16 runs
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2012
    • bibliography
      Includes bibliographical references (p. 107-110)
    • Field of study: Industrial engineering

    Citation and reuse

    Statement of Responsibility

    by Shilpa Shinde

    Machine-readable links