Description
Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides real-time measurements of each PV module's voltage and current is considered. A fault detection algorithm formulated as a clustering problem and addressed using the robust minimum covariance determinant (MCD) estimator is described; its performance on simulated instances of arc and ground faults is evaluated. The algorithm is found to perform well on many types of faults commonly occurring in PV arrays. Among several types of detection algorithms considered, only the MCD shows high performance on both types of faults.
Download count: 2
Details
Title
- Signal processing and robust statistics for fault detection in photovoltaic arrays
Contributors
- Braun, Henry (Author)
- Tepedelenlioğlu, Cihan (Thesis advisor)
- Spanias, Andreas (Thesis advisor)
- Turaga, Pavan (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2012
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: M.S., Arizona State University, 2012
-
bibliographyIncludes bibliographical references (p. 43-46)
-
Field of study: Electrical engineering
Citation and reuse
Statement of Responsibility
by Henry Braun