150551-Thumbnail Image.png
Description
Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena.

Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding problems as a whole based solely on time-series measurements. The method is implemented by incorporating compressive sensing approach that enables an accurate reconstruction of complex dynamical systems in terms of both nodal equations that determines the self-dynamics of units and detailed coupling patterns among units. The representative advantages of the approach are (i) the sparse data requirement which allows for a successful reconstruction from limited measurements, and (ii) general applicability to identical and nonidentical nodal dynamics, and to networks with arbitrary interacting structure, strength and sizes. Another two challenging problem of significant interest in nonlinear dynamics: (i) predicting catastrophes in nonlinear dynamical systems in advance of their occurrences and (ii) predicting the future state for time-varying nonlinear dynamical systems, can be formulated and solved in the framework of compressive sensing using only limited measurements. Once the network structure can be inferred, the dynamics behavior on them can be investigated, for example optimize information spreading dynamics, suppress cascading dynamics and traffic congestion, enhance synchronization, game dynamics, etc. The results can yield insights to control strategies design in the real-world social and natural systems. Since 2004, there has been a tremendous amount of interest in graphene. The most amazing feature of graphene is that there exists linear energy-momentum relationship when energy is low. The quasi-particles inside the system can be treated as chiral, massless Dirac fermions obeying relativistic quantum mechanics. Therefore, the graphene provides one perfect test bed to investigate relativistic quantum phenomena, such as relativistic quantum chaotic scattering and abnormal electron paths induced by klein tunneling. This phenomenon has profound implications to the development of graphene based devices that require stable electronic properties.
Reuse Permissions


  • Download restricted.
    Download count: 1

    Details

    Title
    • System reconstruction via compressive sensing, complex-network dynamics and electron transport in graphene systems
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2012
    • bibliography
      Includes bibliographical references (p. 138-150)
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Rui Yang

    Machine-readable links