150486-Thumbnail Image.png
Description
The use of energy-harvesting in a wireless sensor network (WSN) is essential for situations where it is either difficult or not cost effective to access the network's nodes to replace the batteries. In this paper, the problems involved in controlling

The use of energy-harvesting in a wireless sensor network (WSN) is essential for situations where it is either difficult or not cost effective to access the network's nodes to replace the batteries. In this paper, the problems involved in controlling an active sensor network that is powered both by batteries and solar energy are investigated. The objective is to develop control strategies to maximize the quality of coverage (QoC), which is defined as the minimum number of targets that must be covered and reported over a 24 hour period. Assuming a time varying solar profile, the problem is to optimally control the sensing range of each sensor so as to maximize the QoC while maintaining connectivity throughout the network. Implicit in the solution is the dynamic allocation of solar energy during the day to sensing and to recharging the battery so that a minimum coverage is guaranteed even during the night, when only the batteries can supply energy to the sensors. This problem turns out to be a non-linear optimal control problem of high complexity. Based on novel and useful observations, a method is presented to solve it as a series of quasiconvex (unimodal) optimization problems which not only ensures a maximum QoC, but also maintains connectivity throughout the network. The runtime of the proposed solution is 60X less than a naive but optimal method which is based on dynamic programming, while the peak error of the solution is less than 8%. Unlike the dynamic programming method, the proposed method is scalable to large networks consisting of hundreds of sensors and targets. The solution method enables a designer to explore the optimal configuration of network design. This paper offers many insights in the design of energy-harvesting networks, which result in minimum network setup cost through determination of optimal configuration of number of sensors, sensing beam width, and the sampling time.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Energy management in solar powered wireless sensor networks
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2012
    • bibliography
      Includes bibliographical references (p. 63-66)
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Benjamin Gaudette

    Machine-readable links