136149-Thumbnail Image.png
Description
The transition to lead-free solder in the electronics industry has benefitted the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the

The transition to lead-free solder in the electronics industry has benefitted the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface treatment is challenging but necessary for product reliability and failure analysis. Currently, FIB-SEM, which is time-consuming and expensive, is what is used to understand and analyze the surface treatment-copper oxide(s)-copper system. This project's goals were to determine a characterization methodology that cuts both characterization time and cost in half for characterizing copper oxidation beneath a surface treatment and to determine which protective surface treatment is the best as defined by multiple criterion such as cost, sustainability, and reliability. Two protective surface treatments, organic solderability preservative (OSP) and chromium zincate, were investigated, and multiple characterization techniques were researched. Six techniques were tested, and three were deemed promising. Through our studies, it was determined that the best surface treatment was organic solderability preservative (OSP) and the ideal characterization methodology would be using FIB-SEM to calibrate a QCM model, along with using SERA to confirm the QCM model results. The methodology we propose would result in a 91% reduction in characterization cost and a 92% reduction in characterization time. Future work includes further calibration of the QCM model using more FIB/SEM data points and eventually creating a model for oxide layer thickness as a function of exposure time and processing temperature using QCM as the primary data source. In doing my Capstone project for Intel, a large electronics manufacturing company, I feel it is important to remember the effects of our tools and industry on the environment and to consider the product life cycle in terms other than monetary gain and raw material recycling. To this end I will be discussing how lead is and was used in manufacturing, how it is disposed of, and how this effects the environment including plant, animal, and insect life, as well as ground water contamination. Since the ban was enacted several years ago, I will compare how lead-free alternatives currently in use compare in environmental impact and possibly raise the question of whether we have simply traded one evil for another.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • An Effective Characterization Methodology for Sub-Micron Copper Oxidation and Oxide-Preventing Surface Finishes with a short essay on The Effects of Lead during Product Lifecycle, Impact on the Environment and Alternatives to Leaded Solder
Contributors
Date Created
2015-05
Resource Type
  • Text
  • Machine-readable links