Description
A specific type of Congenital Heart Defect (CHD) known as Coarctation (narrowing) of the Aorta (CoA) prevails in 10% of all CHD patients resulting in life-threatening conditions. Treatments involve limited medical therapy (i.e PGE1 therapy), but in majority of CoA cases, planned surgical treatments are very common. The surgical approach is dictated by the severity of the coarctation, by which the method of treatments is divided between minimally invasive and extensive invasive procedures. Modern diagnostic procedures allude to many disadvantages making it difficult for clinical practices to properly deliver an optimal form of care. Computational Fluid Dynamics (CFD) technique addresses these issues by providing new forms of diagnostic measures that is non-invasive, inexpensive, and more accurate compared to other evaluative devices. To explore further using the CFD based alternative diagnostic measure, this project aims to validate CFD techniques through in vitro studies that capture the fluid flow in anatomically accurate aortic structures. These studies combine particle image velocimetry and catheterization experimental techniques in order to provide a significant knowledge towards validation of fluid flow simulations.
Details
Title
- Evaluating the Hemodynamics of Computational Fluid Dynamic Simulations as a Diagnostic Tool for Coarctation of the Aorta
Contributors
- Pathangey, Girish (Co-author)
- Matheny, Chris (Co-author)
- Frakes, David (Thesis director)
- Pophal, Stephen (Committee member)
- Barrett, The Honors College (Contributor)
- Harrington Bioengineering Program (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015-05
Subjects
Resource Type
Collections this item is in