Description
Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols.

Using DNA nanotechnology a library of structures of various geometries have been built; these structures are modified chemically and/or enzymatically at nanometer precisions. With DNA being chemically very stable, these structures can be functionalized through an abundance of well-established protocols. Additionally, they can be used for various biological and medicinal purposes, such as drug delivery. For in vivo applications, the DNA nanostructures must have a long circulation life in the bloodstream; otherwise, they could be easily excreted shortly after entry. One way of making these nanostructures long lasting in the blood is to cover them with the biocompatible polymer, polyethylene glycol (PEG). Adding DNA to PEG before forming structures has been found to interfere in the hybridization of the DNA in the structure, resulting in formation of deformed structures. In this study we have developed a new methodology based on "click chemistry" (CC) to modify the surface of DNA nanostructures with PEG after they are formed. These structures can then be used for in vivo studies and potential applications in the future.

Included in this item (3)


Details

Title
  • PEGylation of DNA Nanostructures Using Uncatalyzed Click Chemistry
Contributors
Agent
Date Created
2015-05

Machine-readable links