Description
In this investigation, copper slag was used as a coarse aggregate in four different mixes of concrete, consisting of 0%, 25%, 50%, and 100% copper slag by volume. Locally available Salt river aggregate was used as a control, and mixes were tested for density, strength, thermal conductivity, specific heat capacity, and thermal diffusivity. Density was shown to increase with increasing copper slag content, increasing an average of 2298 kg/m^3, 2522 kg/m^3, and 2652 kg/m^3 in the 25%, 50%, and 100% mixes. This represents a 15% increase in density from 0% to 100%. Compressive strength testing indicated that the presence of copper slag in concrete provides no definitive strength benefit over Salt River aggregate. This result was expected, as concrete's strength is primarily derived from the cement matrix and not the aggregate. Thermal conductivity showed a decreasing trend with increasing copper slag content. Th control mix had an average conductivity of 0.660 W/m*K, and the 25%, 50%, and 100% mixes had conductivities of 0.649 W/m*K, 0.647 W/m*K, and 0.519 W/m*K, respectively. This represents 21% drop in thermal conductivity over the control. This result was also expected, as materials formed at higher temperatures, like copper slag, tend to have lower thermal conductivities. Specific heat capacity testing yielded results that were statistically indeterminate, though unlike strength testing this arose from inaccurate assumptions made during testing. This also prevented accurate thermal diffusivity results, as diffusivity is a function of density, thermal conductivity, and specific heat capacity. However, given the trends of the first two parameters, it is plausible to say that diffusivity in copper slag concrete would be lower than that of the control ix. All of these results were plugged into ASU's Pavement Temperature Model to see what effect they had in mitigating the UHI effect.
Details
Title
- Mechanical and Thermal Properties of Copper Slag Concrete
Contributors
- Laughlin, Colin (Author)
- Kaloush, Kamil (Thesis director)
- Phelan, Patrick (Committee member)
- Witczak, Kenneth (Committee member)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2012-05
Subjects
Resource Type
Collections this item is in