Description
Malaria is a disease that has plagued human populations throughout history. Malaria is cause by the parasite Plasmodium, which uses mosquitoes as a vector for transfer. Current methods for controlling malaria include issuing bed nets to citizens, spraying home with insecticides, and reactive medical care. However, using Clustered Regularly Interspaced Short Palindromic repeats (CRISPR) in conjunction with the Cas9 protein found in bacteria, the genomes of mosquitoes can be edited to remove the ability of mosquitoes to host Plasmodium or to create sex bias in which the birth rate of males is increased so as to make reproduction near impossible. Using CRISPR, this genome edit can be ‘driven’ through a population by increasing the likelihood of that gene being passed onto subsequent generations until the entire population possesses that gene; a gene drive can theoretically be used to eliminate malaria around the world. This paper identifies uncertainties concerning scientific, environmental, governance, economic ,and social aspects of researching and implementing gene drives and makes recommendations concerning these areas for the emerging technology of gene drives concerning the eradication of malaria using Sub-Saharan Africa as a case study
Details
Title
- Analyzing Uncertainties Around Gene Drives: A Case Study of Mosquitos in Sub-Saharan Africa
Contributors
- Sacco, Elena Maria (Author)
- Frow, Emma (Thesis director)
- Maynard, Andrew (Committee member)
- School of Politics and Global Studies (Contributor)
- School of International Letters and Cultures (Contributor)
- School of Life Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017-05
Subjects
Resource Type
Collections this item is in