Description
Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from the environment of the CF lung, changing the expression of phenotypes over the course of the infection. As P. aeruginosa infections become chronic, some phenotype changes are known to be linked with negative patient outcomes. An important exoproduct phenotype is rhamnolipid production, which is a glycolipid that P. aeruginosa produces as a surfactant for surface-mediated travel. Over time, the expression of this phenotype decreases in expression in the CF lung.
The objective of this investigation is to evaluate how environmental changes that are related to the growth environment in the CF lung alters rhamnolipid production. Thirty-five P. aeruginosa isolates from Dartmouth College and Seattle Children’s Hospital were selected to observe the impact of temperature, presence of Staphylococcus aureus metabolites, and oxygen availability on rhamnolipid production. It was found that the rhamnolipid production significantly decreased for 30C versus 37C, but not at 40C. The addition of S. aureus spent media, in any of the tested conditions, did not influence rhamnolipid production. Finally, the change in oxygen concentration from normoxia to hypoxia significantly reduced rhamnolipid production. These results were compared to swarming assay data to understand how changes in rhamnolipid production impact surface-mediated motility.
The objective of this investigation is to evaluate how environmental changes that are related to the growth environment in the CF lung alters rhamnolipid production. Thirty-five P. aeruginosa isolates from Dartmouth College and Seattle Children’s Hospital were selected to observe the impact of temperature, presence of Staphylococcus aureus metabolites, and oxygen availability on rhamnolipid production. It was found that the rhamnolipid production significantly decreased for 30C versus 37C, but not at 40C. The addition of S. aureus spent media, in any of the tested conditions, did not influence rhamnolipid production. Finally, the change in oxygen concentration from normoxia to hypoxia significantly reduced rhamnolipid production. These results were compared to swarming assay data to understand how changes in rhamnolipid production impact surface-mediated motility.
Details
Title
- The Effects of Environmental Changes on the Rhamnolipid Production in Pseduomonas aeruginosa
Contributors
- Kiermayr, Jonathan Patrick (Author)
- Bean, Heather (Thesis director)
- Misra, Rajeev (Committee member)
- Haydel, Shelley (Committee member)
- School of International Letters and Cultures (Contributor)
- School of Molecular Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017-05
Subjects
Resource Type
Collections this item is in