Description
Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to

Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer–resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer–resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
Downloads
PDF (986.6 KB)

Details

Title
  • Resource Consumption, Sustainability, and Cancer
Date Created
2015-02-01
Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1007/s11538-014-9983-1
    • Identifier Type
      International standard serial number
      Identifier Value
      0092-8240
    • Identifier Type
      International standard serial number
      Identifier Value
      1522-9602
    Note
    • This is the authors' final accepted manuscript. The final publication is available at http://dx.doi.org/10.1007/s11538-014-9983-1

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Kareva, Irina, Morin, Benjamin, & Castillo-Chavez, Carlos (2015). Resource Consumption, Sustainability, and Cancer. BULLETIN OF MATHEMATICAL BIOLOGY, 77(2), 319-338. http://dx.doi.org/10.1007/s11538-014-9983-1

    Machine-readable links