Description

Nonhyperbolicity, as characterized by the coexistence of Kolmogorov-Arnold-Moser (KAM) tori and chaos in the phase space, is generic in classical Hamiltonian systems. An open but fundamental question in physics concerns the relativistic quantum manifestations of nonhyperbolic dynamics. We choose the

Nonhyperbolicity, as characterized by the coexistence of Kolmogorov-Arnold-Moser (KAM) tori and chaos in the phase space, is generic in classical Hamiltonian systems. An open but fundamental question in physics concerns the relativistic quantum manifestations of nonhyperbolic dynamics. We choose the mushroom billiard that has been mathematically proven to be nonhyperbolic, and study the resonant tunneling dynamics of a massless Dirac fermion. We find that the tunneling rate as a function of the energy exhibits a striking "clustering" phenomenon, where the majority of the values of the rate concentrate on a narrow region, as a result of the chaos component in the classical phase space. Relatively few values of the tunneling rate, however, spread outside the clustering region due to the integrable component. Resonant tunneling of electrons in nonhyperbolic chaotic graphene systems exhibits a similar behavior. To understand these numerical results, we develop a theoretical framework by combining analytic solutions of the Dirac equation in certain integrable domains and physical intuitions gained from current understanding of the quantum manifestations of chaos. In particular, we employ a theoretical formalism based on the concept of self-energies to calculate the tunneling rate and analytically solve the Dirac equation in one dimension as well as in two dimensions for a circular-ring-type of tunneling systems exhibiting integrable dynamics in the classical limit. Because relatively few and distinct classical periodic orbits are present in the integrable component, the corresponding relativistic quantum states can have drastically different behaviors, leading to a wide spread in the values of the tunneling rate in the energy-rate plane. In contrast, the chaotic component has embedded within itself an infinite number of unstable periodic orbits, which provide far more quantum states for tunneling. Due to the nature of chaos, these states are characteristically similar, leading to clustering of the values of the tunneling rate in a narrow band. The appealing characteristic of our work is a demonstration and physical understanding of the "mixed" role played by chaos and regular dynamics in shaping relativistic quantum tunneling dynamics.

Downloads
PDF (15.8 MB)

Details

Title
  • Relativistic Quantum Tunneling of a Dirac Fermion in Nonhyperbolic Chaotic Systems
Contributors
Date Created
2013-09-18
Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1103/PhysRevB.87.224304
    • Identifier Type
      International standard serial number
      Identifier Value
      2469-9969
    • Identifier Type
      International standard serial number
      Identifier Value
      2469-9950
    Note
    • "Copyright 2013 by the American Physical Society." View the article as published at http://prb.aps.org/abstract/PRB/v87/i22/e224304

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Ni, X., Huang, L., Ying, L., & Lai, Y. (2013). Relativistic quantum tunneling of a dirac fermion in nonhyperbolic chaotic systems. Physical Review B, 87(22), 224304. doi:10.1103/PhysRevB.87.224304

    Machine-readable links