Spatial and Temporal Characteristics of the 2009 A/H1N1 Influenza Pandemic in Peru

128766-Thumbnail Image.png
Description

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru.

Methods: We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases.

Results: The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity.

Conclusions: Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school-age children, the age group most affected during this early wave.

Date Created
2011-06-21
Agent

A Population Based Study of Seasonality of Skin and Soft Tissue Infections: Implications for the Spread of CA-MRSA

128796-Thumbnail Image.png
Description

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0-4 years, 5-9 years, 10-14 years, and 15-19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.

Date Created
2013-04-02

Optimizing Treatment Regimes to Hinder Antiviral Resistance in Influenza Across Time Scales

128802-Thumbnail Image.png
Description

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type influenza, if treated, can develop de novo resistance and further spread the resistant pathogen. Our main purpose is to explore the impact of two important factors influencing treatment effectiveness: i) the relative transmissibility of the drug-resistant strain to wild-type, and ii) the frequency of de novo resistance. For the endemic scenario, we find a condition between these two parameters that indicates whether treatment regimes will be most beneficial at intermediate or more extreme values (e.g., the fraction of infected that are treated). Moreover, we present analytical expressions for effective treatment regimes and provide evidence of its applicability across a range of modeling scenarios: endemic behavior with deterministic homogeneous mixing, and single-epidemic behavior with deterministic homogeneous mixing and stochastic heterogeneous mixing. Therefore, our results provide insights for the control of drug-resistance in influenza across time scales.

Date Created
2013-03-29

Mass Media and the Contagion of Fear: The Case of Ebola in America

130341-Thumbnail Image.png
Description
Background
In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public

Background
In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as “digital epidemiology”), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends.
Methodology
We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data.
Conclusions
We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model.
Date Created
2015-06-11
Agent

Influenza and Pneumonia Mortality in 66 Large Cities in the United States in Years Surrounding the 1918 Pandemic

128839-Thumbnail Image.png
Description

The 1918 influenza pandemic was a major epidemiological event of the twentieth century resulting in at least twenty million deaths worldwide; however, despite its historical, epidemiological, and biological relevance, it remains poorly understood. Here we examine the relationship between annual

The 1918 influenza pandemic was a major epidemiological event of the twentieth century resulting in at least twenty million deaths worldwide; however, despite its historical, epidemiological, and biological relevance, it remains poorly understood. Here we examine the relationship between annual pneumonia and influenza death rates in the pre-pandemic (1910–17) and pandemic (1918–20) periods and the scaling of mortality with latitude, longitude and population size, using data from 66 large cities of the United States. The mean pre-pandemic pneumonia death rates were highly associated with pneumonia death rates during the pandemic period (Spearman ρ = 0.64–0.72; P<0.001). By contrast, there was a weak correlation between pre-pandemic and pandemic influenza mortality rates. Pneumonia mortality rates partially explained influenza mortality rates in 1918 (ρ = 0.34, P = 0.005) but not during any other year. Pneumonia death counts followed a linear relationship with population size in all study years, suggesting that pneumonia death rates were homogeneous across the range of population sizes studied. By contrast, influenza death counts followed a power law relationship with a scaling exponent of ∼0.81 (95%CI: 0.71, 0.91) in 1918, suggesting that smaller cities experienced worst outcomes during the pandemic. A linear relationship was observed for all other years. Our study suggests that mortality associated with the 1918–20 influenza pandemic was in part predetermined by pre-pandemic pneumonia death rates in 66 large US cities, perhaps through the impact of the physical and social structure of each city. Smaller cities suffered a disproportionately high per capita influenza mortality burden than larger ones in 1918, while city size did not affect pneumonia mortality rates in the pre-pandemic and pandemic periods.

Date Created
2011-08-19

Epidemiological Characteristics and Underlying Risk Factors for Mortality During the Autumn 2009 Pandemic Wave in Mexico

128887-Thumbnail Image.png
Description

Background: Elucidating the role of the underlying risk factors for severe outcomes of the 2009 A/H1N1 influenza pandemic could be crucial to define priority risk groups in resource-limited settings in future pandemics.

Methods: We use individual-level clinical data on a large series of

Background: Elucidating the role of the underlying risk factors for severe outcomes of the 2009 A/H1N1 influenza pandemic could be crucial to define priority risk groups in resource-limited settings in future pandemics.

Methods: We use individual-level clinical data on a large series of ARI (acute respiratory infection) hospitalizations from a prospective surveillance system of the Mexican Social Security medical system to analyze clinical features at presentation, admission delays, selected comorbidities and receipt of seasonal vaccine on the risk of A/H1N1-related death. We considered ARI hospitalizations and inpatient-deaths, and recorded demographic, geographic, and medical information on individual patients during August-December, 2009.

Results: Seasonal influenza vaccination was associated with a reduced risk of death among A/H1N1 inpatients (OR = 0.43 (95% CI: 0.25, 0.74)) after adjustment for age, gender, geography, antiviral treatment, admission delays, comorbidities and medical conditions. However, this result should be interpreted with caution as it could have been affected by factors not directly measured in our study. Moreover, the effect of antiviral treatment against A/H1N1 inpatient death did not reach statistical significance (OR = 0.56 (95% CI: 0.29, 1.10)) probably because only 8.9% of A/H1N1 inpatients received antiviral treatment. Moreover, diabetes (OR = 1.6) and immune suppression (OR = 2.3) were statistically significant risk factors for death whereas asthmatic persons (OR = 0.3) or pregnant women (OR = 0.4) experienced a reduced fatality rate among A/H1N1 inpatients. We also observed an increased risk of death among A/H1N1 inpatients with admission delays >2 days after symptom onset (OR = 2.7). Similar associations were also observed for A/H1N1-negative inpatients.

Conclusions: Geographical variation in identified medical risk factors including prevalence of diabetes and immune suppression may in part explain between-country differences in pandemic mortality burden. Furthermore, access to care including hospitalization without delay and antiviral treatment and are also important factors, as well as vaccination coverage with the 2008–09 trivalent inactivated influenza vaccine.

Date Created
2012-07-16

Did Modeling Overestimate the Transmission Potential of Pandemic (H1N1-2009)? Sample Size Estimation for Post-Epidemic Seroepidemiological Studies

130348-Thumbnail Image.png
Description
Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of

Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic, is not the result of a binomial sampling process because infection events are not independent of each other, we propose the use of an asymptotic distribution of the final size to compute approximate 95% confidence intervals of the observed final size. This allows the comparison of the observed final sizes against predictions based on the modeling study (R = 1.15, 1.40 and 1.90), which also yields simple formulae for determining sample sizes for future seroepidemiological studies. We examine a total of eleven published seroepidemiological studies of H1N1-2009 that took place after observing the peak incidence in a number of countries. Observed seropositive proportions in six studies appear to be smaller than that predicted from R = 1.40; four of the six studies sampled serum less than one month after the reported peak incidence. The comparison of the observed final sizes against R = 1.15 and 1.90 reveals that all eleven studies appear not to be significantly deviating from the prediction with R = 1.15, but final sizes in nine studies indicate overestimation if the value R = 1.90 is used.
Conclusions
Sample sizes of published seroepidemiological studies were too small to assess the validity of model predictions except when R = 1.90 was used. We recommend the use of the proposed approach in determining the sample size of post-epidemic seroepidemiological studies, calculating the 95% confidence interval of observed final size, and conducting relevant hypothesis testing instead of the use of methods that rely on a binomial proportion.
Date Created
2011-03-24

Contagion in Mass Killings and School Shootings

130349-Thumbnail Image.png
Description
Background
Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar

Background
Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.
Methods
Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event.
Conclusions
We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.
Date Created
2015-07-02

Agricultural Trade Networks and Patterns of Economic Development

128940-Thumbnail Image.png
Description

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network tool known as triadic analysis we develop triad significance profiles for a series of agricultural commodities traded among countries. Results reveal a novel network “superfamily” combining properties of biological information processing networks and human social networks. To better understand this unique network signature, we examine in more detail the degree and triadic distributions within the trade network by country and commodity. Our results show that countries fall into two very distinct classes based on their triadic frequencies. Roughly 165 countries fall into one class while 18, all highly isolated with respect to international agricultural trade, fall into the other. Only Vietnam stands out as a unique case. Finally, we show that as a country becomes less isolated with respect to number of trading partners, the country's triadic signature follows a predictable trajectory that may correspond to a trajectory of development.

Date Created
2012-07-02

When (Distant) Relatives Stay Too Long: Implications for Cancer Medicine

128946-Thumbnail Image.png
Description

Whole-genome analyses of human medulloblastomas show that the dominant clone at relapse is present as a rare subclone at primary diagnosis.

Date Created
2016-02-24
Agent