This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal…
This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems.
Preliminary design and simulation studies based on Anderson's model band line-ups were undertaken for CdPbS and InGaN alloys. Systems of six subcells obtained efficiencies in the 32-38% range for CdPbS and 34-40% for InGaN at 1-240 suns, though both materials systems require significant development before these results could be achieved experimentally. For an experimental demonstration, CdSSe was selected due to its availability. Proof-of-concept CdSSe nanowire ensemble solar cells with two subcells were fabricated simultaneously on one substrate. I-V characterization under 1 sun AM1.5G conditions yielded open-circuit voltages (Voc) up to 307 and 173 mV and short-circuit current densities (Jsc) up to 0.091 and 0.974 mA/cm2 for the CdS- and CdSe-rich cells, respectively. Similar thin film cells were also fabricated for comparison. The nanowire cells showed substantially higher Voc than the film cells, which was attributed to higher material quality in the CdSSe absorber. I-V measurements were also conducted with optical filters to simulate a simple form of spectrum-splitting. The CdS-rich cells showed uniformly higher Voc and fill factor (FF) than the CdSe-rich cells, as expected due to their larger band gaps. This suggested higher power density was produced by the CdS-rich cells on the single-nanowire level, which is the principal benefit of spectrum-splitting. These results constitute a proof-of-concept experimental demonstration of the MILAMB approach to fabricating multiple cells for spectrum-splitting photovoltaics. Future systems based on this approach could help to reduce the cost and complexity of manufacturing spectrum-splitting photovoltaic systems and offer a low cost alternative to multi-junction tandems for achieving high efficiencies.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Multiple quantum well (MQW) structures have been employed in a variety of solid state devices. The InGaAs/GaAs material system is of special interest for many optoelectronic applications. This study examines epitaxial growth and defect creation in InGaAs/GaAs MQWs at its…
Multiple quantum well (MQW) structures have been employed in a variety of solid state devices. The InGaAs/GaAs material system is of special interest for many optoelectronic applications. This study examines epitaxial growth and defect creation in InGaAs/GaAs MQWs at its initial stage. Correlations between physical properties, crystal perfection of epitaxial structures, and growth conditions under which desired properties are achieved appear as highly important for the realization and final performance of semiconductor based devices.
Molecular beam epitaxy was utilized to grow InGaAs/GaAs MQW structures with a variation in deposition temperature Tdep among the samples to change crystalline and physical properties. High resolution x-ray diffraction and transmission electron microscopy were utilized to probe crystal properties, whereas photoluminescence spectroscopy evaluated optical response. An optimal growth temperature Tdep=505°C was found for 20% In composition. The density of 60° primary and secondary dislocation loops increased continuously at lower growth temperatures and reduced crystal perfection, as evaluated by lateral and vertical coherence lengths and diffuse scattering in reciprocal space maps. Likewise, the strength of non-radiative Shockley-Read-Hall recombination increased as deposition temperature was reduced. Elevated deposition temperature led to InGaAs decay in the structures and manifested in different crystalline defects with a rather isotropic distribution and no lateral ordering. High available thermal energy increased atomic surface diffusivity and resulted in growth surface instability against perturbations, manifesting in lateral layer thickness undulations. Carriers in structures grown at elevated temperature experience localization in local energy minima.InGaAs/GaAs MQW structures reveal correlation between their crystal quality and optical properties. It can be suggested that there is an optimal growth temperature range for each In composition with high crystal perfection and best physical response.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on…
Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with sub-wavelength dimensions, thus enabling sub-wavelength cavity lasers. Based on this idea, I fabricated two different kinds of metallic cavity nanolasers with rectangular and circular geometries with InGaAs as the gain material and silver as the metallic shell. The lasing wavelength is around 1.55 μm, intended for optical communication applications. Continuous wave (CW) lasing at cryogenic temperature under current injection was achieved on devices with a deep sub-wavelength physical cavity volume smaller than 0.2 λ3. Improving device fabrication process is one of the main challenges in the development of metallic cavity nanolasers due to its ultra-small size. With improved fabrication process and device design, CW lasing at room temperature was demonstrated as well on a sub-wavelength rectangular device with a physical cavity volume of 0.67 λ3. Experiments verified that a small circular nanolasers supporting TE¬01 mode can generate an azimuthal polarized laser beam, providing a compact such source under electrical injection. Sources with such polarizations could have many special applications. Study of digital modulation of circular nanolasers showed that laser noise is an important factor that will affect the data rate of the nanolaser when used as the light source in optical interconnects. For future development, improving device fabrication processes is required to improve device performance. In addition, techniques need to be developed to realize nanolaser/Si waveguide integration. In essence, resolving these two critical issues will finally pave the way for these nanolasers to be used in various practical applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The ability of a single monolithic semiconductor structure to emit or lase in a broad spectrum range is of great importance for many applications such as solid-state lighting and multi-spectrum detection. But spectral range of a laser or light-emitting diode…
The ability of a single monolithic semiconductor structure to emit or lase in a broad spectrum range is of great importance for many applications such as solid-state lighting and multi-spectrum detection. But spectral range of a laser or light-emitting diode made of a given semiconductor is typically limited by its emission or gain bandwidth. Due to lattice mismatch, it is typically difficult to grow thin film or bulk materials with very different bandgaps in a monolithic fashion. But nanomaterials such as nanowires, nanobelts, nanosheets provide a unique opportunity. Here we report our experimental results demonstrating simultaneous lasing in two visible colors at 526 and 623 nm from a single CdSSe heterostructure nanosheet at room temperature. The 97 nm wavelength separation of the two colors is significantly larger than the gain bandwidth of a typical single II-VI semiconductor material. Such lasing and light emission in a wide spectrum range from a single monolithic structure will have important applications mentioned above.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in…
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar…
The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater flexibility for achieving a variety of alloy compositions. Furthermore, the nanowire geometry permits simultaneous incorporation of a wide range of compositions on a single substrate. Such controllable alloy composition variation can be realized either within an individual nanowire or between distinct nanowires across a substrate. This dissertation explores the control of spatial composition variation in ternary alloy nanowires. Nanowires were grown by the vapor-liquid-solid (VLS) mechanism using chemical vapor deposition (CVD). The gas-phase supersaturation was considered in order to optimize the deposition morphology. Composition and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Optical properties were investigated through photoluminescence (PL) measurements. The chalcogenides selected as alloy endpoints were lead sulfide (PbS), cadmium sulfide (CdS), and cadmium selenide (CdSe). Three growth modes of PbS were identified, which included contributions from spontaneously generated catalyst. The resulting wires were found capable of lasing with wavelengths over 4000 nm, representing the longest known wavelength from a sub-wavelength wire. For CdxPb1-xS nanowires, it was established that the cooling process significantly affects the alloy composition and structure. Quenching was critical to retain metastable alloys with x up to 0.14, representing a new composition in nanowire form. Alternatively, gradual cooling caused phase segregation, which created heterostructures with light emission in both the visible and mid-infrared regimes. The CdSSe alloy system was fully explored for spatial composition variation. CdSxSe1-x nanowires were grown with composition variation across the substrate. Subsequent contact printing preserved the designed composition gradient and led to the demonstration of a variable wavelength photodetector device. CdSSe axial heterostructure nanowires were also achieved. The growth process involved many variables, including a deliberate and controllable change in substrate temperature. As a result, both red and green light emission was detected from single nanowires.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination…
This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied to nanowires (NWs). In fact this is a convenient and useful approach for evaluating the quality of NWs since it considers not only the PL emission but also the absorption of NWs. The process is well illustrated and performed with both wavelength-dependent and power-dependent measurements. The measured PLQE is in the range of 0.3% ~ 5.4%. During the measurement, a phenomenon called photodegradation is observed and examined by a set of power-dependence measurements. This effect can be a factor for underestimating the PLQE and a procedure is introduced during the sample preparation process which managed to reduce this effect for some degree.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques…
Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from gaining a thorough understanding of single molecule junctions. Firstly, the time resolution of experiments is typically limited to milli to microseconds, while molecular dynamics simulations are carried out on the time scale of pico to nanoseconds. A huge gap therefore persists between the theory and the experiments. This thesis demonstrates a nanosecond scale measurement of the gold atomic contact breakdown process. A combined setup of DC and AC circuits is employed, where the AC circuit reveals interesting observations in nanosecond scale not previously seen using conventional DC circuits. The breakdown time of gold atomic contacts is determined to be faster than 0.1 ns and subtle atomic events are observed within nanoseconds. Furthermore, a new method based on the scanning tunneling microscope break junction (STM-BJ) technique is developed to rapidly record thousands of I-V curves from repeatedly formed single molecule junctions. 2-dimensional I-V and conductance-voltage (G-V) histograms constructed using the acquired data allow for more meaningful statistical analysis to single molecule I-V characteristics. The bias voltage adds an additional dimension to the conventional single molecule conductance measurement. This method also allows one to perform transition voltage spectra (TVS) for individual junctions and to study the correlation between the conductance and the tunneling barrier height. The variation of measured conductance values is found to be primarily determined by the poorly defined contact geometry between the molecule and metal electrodes, rather than the tunnel barrier height. In addition, the rapid I-V technique is also found useful in studying thermoelectric effect in single molecule junctions. When applying a temperature gradient between the STM tip and substrate in air, the offset current at zero bias in the I-V characteristics is a measure of thermoelectric current. The rapid I-V technique allows for statistical analysis of such offset current at different temperature gradients and thus the Seebeck coefficient of single molecule junctions is measured. Combining with single molecule TVS, the Seebeck coefficient is also found to be a measure of tunnel barrier height.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems.…
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)