The ringtail (Bassariscus astutus), a member of the Procyonidae, is capable of 180 degrees of hindlimb reversal during headfirst descent down a vertical substrate. The goal of this study was to determine the presence or absence of myological adaptations related…
The ringtail (Bassariscus astutus), a member of the Procyonidae, is capable of 180 degrees of hindlimb reversal during headfirst descent down a vertical substrate. The goal of this study was to determine the presence or absence of myological adaptations related to hindlimb reversal in the ringtail. Data for B. astutus are presented, including muscle weights and muscle maps ascertained from the dissection of four hindlimbs. Data from the current study were compared to published accounts of other species capable of hindlimb reversal, including procyonids (raccoon, coati, kinkajou, olingo), a mustelid (marten), palm civet, mongoose, tree squirrel, common tree shrew, and slow loris. Muscle mass data from this study demonstrate that the hip adductors of scansorial mammals are significantly more robust than those of terrestrial mammals, indicating a myological adaptation for climbing, but not necessarily hindlimb reversal. Among hindlimb reversers, the majority exhibit one belly of m. sartorius, the presence of m. extensor digiti I longus, and a fibular origin for m. fibularis longus. These characteristics indicate an emphasis on hip extension, ankle plantarflexion, and pes inversion. However, these characteristics are more likely due to phylogeny than hindlimb reversal because of their presence in closely-related non-reversers. Additional data on families outside of Carnivora may help determine if these myological traits are indeed due to phylogeny. Other myological data, such as moment arms and cross sectional areas, may provide evidence of adaptations for hindlimb reversal.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist…
While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by federal regulations. Although these companies adhere to the Uniform Anatomical Gift Act, the lack of a single entity responsible for overseeing their operations has led to public skepticism and animosity among competing businesses. Legislation has the potential to legitimize the industry. For it to be successful, however, the intricacies of a complex market that deals directly with the movement of human remains and intangible issues of human integrity and morality, must be thoroughly understood.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of…
Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)