Evaluation of Bexarotene and Novel RXR Agonists for the Treatment of Estrogen Receptor Alpha \u2014 Positive Breast Cancer

134705-Thumbnail Image.png
Description
Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by

Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by acting as an estrogen receptor alpha (ERα) signaling antagonist, and can therefore be used to treat ERα-positive cancers, such as breast cancer. Using dual luciferase reporter assays, real-time qRT-PCR, and metabolic proliferation assays, the anti-estrogenic properties of Bex were ascertained. However, since Bex produces numerous contraindications, select novel RXR drug analogs were also evaluated. Results revealed that, in luciferase assays, Bex could significantly (P < 0.01) inhibit the transcriptional activity of ERα, so much so that it rivaled ER pan-antagonist ZK164015 in potency. Bex was also able to suppress the proliferation of two breast cancer cell models, MCF-7 and T-47D, and downregulate the expression of an estrogen receptor target gene (A-myb), which is responsible for cell proliferation. In addition, novel analogs A30, A33, A35, and A38 were evaluated as being more potent at inhibiting ERE-mediated transcription than Bex at lower concentrations. Analogs A34 and A35 were able to suppress MCF-7 cell proliferation to a degree comparable to that of Bex. Inhibition of T-47D cell proliferation, by contrast, was best achieved by analogs A34 and A36. For those with ERα – positive breast cancer who are refractory to current chemotherapeutics used to treat breast cancer, Bex and its analogs may prove to be useful alternative options.
Date Created
2016-12
Agent

Identification of Differentially Expressed Genes as Biomarkers for Diagnosis of Irritable Bowel Syndrome (IBS): A Pilot Gene Discovery Hypothesis Generating Study

137404-Thumbnail Image.png
Description
The diagnosis of irritable bowel syndrome (IBS) is currently based on symptomatic criteria that exclude other conditions affecting the gastrointestinal tract, such as celiac disease, food allergies, and infections. The absence of appropriate diagnostic and therapeutic approaches for IBS places

The diagnosis of irritable bowel syndrome (IBS) is currently based on symptomatic criteria that exclude other conditions affecting the gastrointestinal tract, such as celiac disease, food allergies, and infections. The absence of appropriate diagnostic and therapeutic approaches for IBS places a significant burden on the patient and the health care system due to direct and indirect costs of care. Limitations associated with the application of symptomatic criteria include inappropriate use and/or intrinsic limitations such as the population to which these criteria are applied. The lack of biomarkers specific for IBS, non-specific abdominal symptoms, and considerable variability in the disease course creates additional uncertainty during diagnosis. This project involved screening tissue samples from patients with verified IBS to identify gene expression-based biomarkers associated with IBS. Through validation of microarray gene chip data on the tissue samples using PCR, it was determined that a number of genes within the diseased IBS patient tissue samples were differentially expressed in comparison to the healthy subjects. These findings could potentially lead to the diagnosis of IBS on the basis of a genetic "fingerprint".
Date Created
2013-12
Agent

Characterization of Second and Third Generation, Novel RXR Selction Agonists for the Treatment of Cutaneous T-Cell Lymphoma

136012-Thumbnail Image.png
Description
Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost

Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective in the treatment of multiple types of cancer, including lung cancer. However, the disadvantages of using Bex include increased instances of hypothyroidism and excessive concentrations of blood triglycerides. If an analog of Bex can be developed which retains high affinity RXR binding similar to the 9-cis retinoic acid while exhibiting less interference for heterodimerization pathways, it would be of great clinical significance in improving the quality of life for patients with CTCL. This thesis will detail the biological profiling of additional novel (Generation Two) analogs, which are currently in submission for publication, as well as that of Generation Three analogs. The results from these studies reveal that specific alterations in the core structure of the Bex "parent" compound structure can have dramatic effects in modifying the biological activity of RXR agonists.
Date Created
2012-05
Agent

Modulation of 1,25-Dihydroxyvitamin D3 Signaling: Implications for Aging and Neuropsychiatric Disorders

135926-Thumbnail Image.png
Description
The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal models. This present study employed mammalian 2-hybrid (M2H) and vitamin D responsive element (VDRE)-based transcriptional assays to investigate the potential effects of Res and SIRT-1 on VDR signal transduction. Results from VDRE-based assays indicate that Res and SIRT-1 potentiate 1,25D-VDR activity via cell-and-promoter-specific pathways. In addition, 1,25D displacement experiments revealed an increase in VDR-bound radiolabeled 1,25D in the presence of Res, suggesting that Res may potentiate VDR transactivation by stimulating 1,25D binding. M2H assays in HEK293 cells were then utilized to assess levels of interaction between VDR and VDR comodulators, including RXR, SRC-1, and DRIP-205. Both Res and SIRT-1 increased the ability of VDR to associate with RXR; however, SRC-1 and DRIP-205 interactions were not enhanced. The activity of a novel, non-acetylatable VDR mutant, K413R, was probed revealing that K413R possesses amplified transactivation capacity over wild-type VDR. A SIRT-1 inhibitor, EX-527, was used to suppress endogenous SIRT-1, resulting in significantly decreased VDR transactivation. Finally, qPCR results in HEK293 cells revealed that the 1,25D-mediated induction of CYP24A1, an endogenous VDR target gene, was enhanced (85%) by SIRT-1 while Res increased CYP24A1 expression by 294%. The combination of 1,25D, SIRT-1, and Res amplified CYP24A1 expression by 326% over 1,25D, although this effect did not reach statistical significance when compared to the Res only treated group. We conclude that acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This loop is suppressed by resveratrol/SIRT-1-catalyzed deacetylation of VDR, restoring VDR activity. The two compounds, 1,25-dihydroxyvitamin D (1,25D, vitamin D) and 5-hydroxytryptamine (5-HT, serotonin), have been proposed to play a significant role in abnormal social behavior associated with psychological conditions including autism spectrum disorders (ASDs) and depression; however, the mechanism underlying these associations has yet to be elucidated. Deficiencies in 1,25D or 5-HT have been linked to the increased incidence of ASDs. Thus, examining the modulation of genes involved in 5-HT biosynthesis, reuptake, and degradation is fundamental in linking low 1,25D levels to the increased incidence of psychiatric disorders. We propose that 1,25D regulates tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway of 5-HT. In order to evaluate the regulation of TPH2 in neuronal cells, three formulations of media were examined to optimize the cell culture conditions necessary for growth and morphology of embryonic rat medullary raphe (B14) serotonergic neurons. Next, quantitative real time-PCR (qPCR) was utilized to examine TPH2 expression in cultured human glioblastoma (U-87) cells and rat serotonergic neurons (B-14). Human TPH2 mRNA in U-87 cells was induced dose-dependently resulting in a 2.4-fold increase at 10 nM 1,25D. Strikingly, TPH2 mRNA in B-14 cells was observed to be 26- to 86-fold upregulated at 10 nM 1,25D; however, 1 nM and 100 nM 1,25D elicited significantly smaller inductions (8-fold and 1.2-fold, respectively).
Date Created
2015-12
Agent

Regulation Of Genes Involved In Skin Repair By Lipid Compounds With Implications For Psoriasis Treatment

135740-Thumbnail Image.png
Description
Psoriasis is a skin disease that affects millions of individuals. Genetic risk factors for psoriasis include a common deletion of two late cornified envelope (LCE) genes (LCE3B and LCE3C) located within a cluster of genes expressed during epithelial differentiation and

Psoriasis is a skin disease that affects millions of individuals. Genetic risk factors for psoriasis include a common deletion of two late cornified envelope (LCE) genes (LCE3B and LCE3C) located within a cluster of genes expressed during epithelial differentiation and skin repair. It was previously discovered that treatment with 1,25-dihydroxyvitamin D3 (1,25D) or analogs thereof can improve psoriasis symptoms in many patients, but the molecular mechanisms for this action are largely unknown. Our laboratory previously showed that 1,25D as well as low affinity ligands for the vitamin D receptor (VDR), such as delphinidin and cyanidin, are capable of upregulating the remaining LCE3A, -3D, and -3E genes to potentially compensate for the loss of LCE3B and -3C in promoting skin repair. In the current study, DHA and curcumin were tested and found to also upregulate LCE3 transcripts in a dose-dependent manner. To investigate other potential target genes for 1,25D and DHA, we tested JunB, for which low or absent expression has been reported to cause or be associated with psoriatic lesions. Our experiments showed a trend for an upregulation of JunB mRNA after DHA treatment, potentially providing benefit for psoriasis patients. Although our hypothesis is that DHA functions as a vitamin D receptor ligand to mediate upregulation of JunB and LCE3 genes, other investigators have assumed that DHA actions in skin are mediated via PPAR isoforms. We therefore utilized a selective ligand for PPAR delta (GW501516) to determine whether PPAR delta, the primary PPAR isoform in keratinocytes, is a mediator of DHA-induced LCE3 gene activation. Although a modest upregulation of LCE3 genes was seen after treatment with GW501516, our findings are still consistent with DHA acting primarily as a VDR ligand. Our results not only provide additional information about the ability of VDR ligands to upregulate specific skin genes with relevance for skin repair, but also may help provide a molecular basis for testing improved treatments for mild to moderate psoriasis.
Date Created
2016-05
Agent

Analysis of Differential Secondary Effects of Novel Rexinoids: Select Rexinoid X Receptor Ligands Demonstrate Differentiated Side Effect Profiles

128376-Thumbnail Image.png
Description

In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select rexinoid X receptor (RXR) analogs that we reported previously. We

In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select rexinoid X receptor (RXR) analogs that we reported previously. We assessed pharmacokinetic profiles, lipid and thyroid-stimulating hormone (TSH) levels in rats, and cell culture activity of rexinoids in sterol regulatory element-binding protein (SREBP) induction and thyroid hormone inhibition assays. We also performed RNA sequencing of the brain tissues of rats that had been dosed with the compounds. We show here for the first time that potent rexinoid activity can be uncoupled from drastic lipid changes and thyroid axis variations, and we propose that rexinoids can be developed with improved side effect profiles than the parent compound, bexarotene (1).

Date Created
2015-03-16
Agent

Sentrin/SUMO Specific Proteases as Novel Tissue-Selective Modulators of Vitamin D Receptor-Mediated Signaling

128774-Thumbnail Image.png
Description

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to remove small ubiquitin-like modifier (SUMO) from target proteins upon the activities of VDR and related receptors. We report that SENP1 and SENP2 strikingly potentiate ligand-mediated transactivation of VDR and also its heterodimeric partner, retinoid X receptor (RXRα) with depletion of cellular SENP1 significantly diminishing the hormonal responsiveness of the endogenous vitamin D target gene CYP24A1. We find that SENP-directed modulation of VDR activity is cell line-dependent, achieving potent modulatory effects in Caco-2 and HEK-293 cells, while in MCF-7 cells the vitamin D signal is unaffected by any tested SENP. In support of their function as novel modulators of the vitamin D hormonal pathway we demonstrate that both SENP1 and SENP2 can interact with VDR and reverse its modification with SUMO2. In a preliminary analysis we identify lysine 91, a residue known to be critical for formation and DNA binding of the VDR-RXR heterodimer, as a minor SUMO acceptor site within VDR. In combination, our results support a repressor function for SUMOylation of VDR and reveal SENPs as a novel class of VDR/RXR co-regulatory protein that significantly modulate the vitamin D response and which could also have important impact upon the functionality of both RXR-containing homo and heterodimers.

Date Created
2014-02-20
Agent