Searching for Stellar Outflow in the R Coronae Australis Region

136912-Thumbnail Image.png
Description
Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It

Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid velocity maps in IDL. These clearly showed the main large outflow, and then we identified a few other possible outflows.
Date Created
2014-05
Agent

Photon Noise From Chaotic and Coherent Millimeter-Wave Sources Measured With Horn-Coupled, Aluminum Lumped-Element Kinetic Inductance Detectors

128028-Thumbnail Image.png
Description

We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier

We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP ≈ 2 × 10-17 W Hz-1/2, referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP ∝ P for broadband (chaotic) illumination and NEP ∝ P1/2 for continuous-wave (coherent) illumination.

Date Created
2016-02-25
Agent

Topics in cosmology and gravitation

155435-Thumbnail Image.png
Description
Two ideas that extends on the theory of General Relativity are introduced and then the phenomenology they can offer is explored. The first idea shows how certain types of $f(R)$ gravity allows for traversable wormholes among its vacuum solutions. This

Two ideas that extends on the theory of General Relativity are introduced and then the phenomenology they can offer is explored. The first idea shows how certain types of $f(R)$ gravity allows for traversable wormholes among its vacuum solutions. This is surprising to find in such simple setting as these type of solutions usually requires fairly complex constructions to satisfy the equations of motion of a gravitational theory. The second idea is the matter bounce description of the early universe where a fairly unique feature of the model is identified. Consequences of this feature could allow the paradigm to distinguish itself from other alternative descriptions, such as inflation, through late time observations. An explicit example of this claim is worked out by studying a model involving an interaction in the dark sector. Results of a more astrophysical nature, where a careful analysis of the morphology of blazar halos is performed, are also presented in the Appendix. The analysis determined that the $Q$-statistic is an appropriate tool to probe the properties of the intergalactic magnetic fields responsible for the halos formation.
Date Created
2017
Agent

Advancement of heterodyne focal plane arrays for terahertz astronomy

155091-Thumbnail Image.png
Description
The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne

The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200 K, the specification for ALMA band-9. The KAPPa receiver uses a novel design of a permanent magnet to suppress the noise generated by the DC Josephson effect. This is in stark contrast to the benchmark solution of an electromagnet that is both too expensive and too large for use in kilo-pixel arrays. I present a simple, robust design for a single receiver element that can be tessellated throughout a telescope's focal plane to make a ~1000 pixel array, which is much larger than the current state-of-the-art array, SuperCam, at 64 pixels and ~345 GHz.

While the original goal to develop receiver technologies has been accomplished, the path to this accomplishment required a far more holistic approach than originally anticipated. The goal of the present work has expended exponentially from that of KAPPas promised technical achievements. In the present work, KAPPa and its extension, I present solutions ranging from 1) the creation of large scale astronomical maps, 2) metaheuristic algorithms that solve tasks too complex for humans, and 3) detailed technical assembly of microscopic circuit components. Each part is equally integral for the realization of a ~1000 pixel THz arrays.

Our automated tuning algorithm, Alice, uses differential evolution techniques and has been extremely successful in its implementation. Alice provides good results for characterizing the extremely complex tuning topology of THz receivers. More importantly, it has accomplished rapid optimization of an entire array without human intervention. In the age of big data astronomy, I have prepared THz heterodyne receiver arrays by making cutting edge community-oriented data analysis tools for the future of large-scale discovery. I present a from-scratch reduction and analysis architecture developed for observations of 100s of square degree on-the-sky maps with SuperCam to address the gulf between observing with single dish antennas versus a truly integrated focal plane array.
Date Created
2016
Agent

Applications of kinetic inductance: parametric amplifier & phase shifter, 2DEG coupled co-planar structures & microstrip to slotline transition at RF frequencies

154586-Thumbnail Image.png
Description
Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by

Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K ± 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz – 115 GHz).The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift ∆ϕ_max (I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a capacitvely coupled 2DEG mesa structure. Low temperature experiments were done at 77 K and 10 K with photo-doping the 2DEG. A circuit model of a 2DEG coupled co-planar waveguide model is also proposed and simulated.
Date Created
2016
Agent

Direct dark matter detection phenomenology

154449-Thumbnail Image.png
Description
The identity and origin of dark matter is one of the more elusive mysteries in the fields of particle physics and cosmology. In the near future, direct dark matter detectors will offer a chance at observing dark matter non-gravitationally for

The identity and origin of dark matter is one of the more elusive mysteries in the fields of particle physics and cosmology. In the near future, direct dark matter detectors will offer a chance at observing dark matter non-gravitationally for the first time. In this thesis, formalisms are developed to analyze direct detection experiments and to quantify the extent to which properties of the dark matter can be determined. A range of non-standard assumptions about the dark matter are considered, including inelastic scattering, isospin violation and momentum dependent scattering. Bayesian inference is applied to realistic detector configurations to evaluate parameter estimation and model selection ability.

A complete set of simplified models for spin-0, spin-1/2 and spin-1 dark matter candidates are formulated. The corresponding non-relativistic operators are found, and are used to derive observational signals for the simplified models. The ability to discern these simplified models with direct detection experiments is demonstrated. In the near future direct dark matter detectors will be sensitive to coherent neutrino scattering, which will limit the discovery potential of these experiments. It was found that eleven of the fourteen non-relativistic operators considered produce signals distinct from coherent scattering, and thus the neutrino background does not greatly affect the discovery potential in these cases.
Date Created
2016
Agent

A novel ortho-mode transducer for the 750-1150 GHz band

153247-Thumbnail Image.png
Description
The design, fabrication and testing of a novel full waveguide band ortho-mode transducer (OMT) for operation from 750-1150 GHz is presented in this dissertation. OMT is a device that separates orthogonal polarizations within the same frequency band. At millimeter and

The design, fabrication and testing of a novel full waveguide band ortho-mode transducer (OMT) for operation from 750-1150 GHz is presented in this dissertation. OMT is a device that separates orthogonal polarizations within the same frequency band. At millimeter and sub millimeter wavelengths, OMTs can achieve precise characterization of the amplitude, spectrum and polarization of electromagnetic radiation by increasing spectral coverage and sensitivity while reducing aperture size, optical spill and instrumental polarization offsets. A fully planar design is implemented with the use of Robinson OMT model along with a planar finline circuit. CST Microwave Studio is used to design and simulate OMT. Existing finline circuits which were fabricated using photolithographic techniques on a thin dielectric substrate were employed. The finline chips are fabricated on a thin (1 µm) SOI substrate with thick (5 µm) gold finline metallization and gold beam leads for chip grounding. The OMT is designed with H plane splits in the through arm and E plane splits in the side arm to comply with the existing machining tools and technique. Computer Numerical Controlled (CNC) machining is used to fabricate the OMT split block. The OMT is tested at Jet Propulsion Laboratory (JPL) using Agilent PNA-X VNA and VDI WR1.0 extension heads. In the future, this OMT design could be a part of a fully integrated dual polarization mixer block, with the input horn, OMT and both mixers fabricated in a single flangeless split block. In Radio Astronomy, integrated dual polarization mixers of this type will increase the signal processing speed by 40%. This type of OMT can also be used for terahertz RADAR and communication purposes.
Date Created
2014
Agent

First Observation of the Thermal Sunyaev-Zel'dovich Effect With Kinetic Inductance Detectors

129530-Thumbnail Image.png
Description

Context: Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zel’dovich (tSZ) effect have proven to be a powerful tool to detect and study them. In this

Context: Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zel’dovich (tSZ) effect have proven to be a powerful tool to detect and study them. In this context, high resolution tSZ observations (~tens of arcsec) are of particular interest to probe intermediate and high redshift clusters.

Aims: Observations of the tSZ effect will be carried out with the millimeter dual-band NIKA2 camera, based on kinetic inductance detectors (KIDs) to be installed at the IRAM 30-m telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors that observe at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively.

Methods: The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at 140 GHz. The efficiency of this procedure has been characterized through realistic simulations of the observations.

Results: The observed 140 GHz map presents a decrement at the cluster position consistent with the tSZ nature of the signal. We used this map to study the pressure distribution of the cluster by fitting a gNFW model to the data. Subtracting this model from the map, we confirm that RX J1347.5-1145 is an ongoing merger, which confirms and complements previous tSZ and X-ray observations.

Conclusions: For the first time, we demonstrate the tSZ capability of KID based instruments. The NIKA2 camera with ~5000 detectors and a 6.5 arcmin field of view will be well-suited for in-depth studies of the intra cluster medium in intermediate to high redshifts, which enables the characterization of recently detected clusters by the Planck satellite.

Date Created
2014-09-01
Agent

Tidal tales of minor mergers: star formation in the tidal tails of minor mergers

151842-Thumbnail Image.png
Description
This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor

This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 (``The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely dominates and enhances the local star formation.
Date Created
2013
Agent