Global Atmospheric Carbon Budget: Results From an Ensemble of Atmospheric CO2 Inversions

127901-Thumbnail Image.png
Description

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (−3.4 Pg C yr-1 (±0.5 Pg C yr-1 standard deviation), with slightly more uptake over land than over ocean), a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr-1) and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr-1) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr[superscript −1] for the 1996–2007 period), with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr-1), the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr-1). Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr-1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale), but still highly dependent on the prior flux seasonality over the ocean. Finally we provide recommendations to interpret the regional fluxes, along with the uncertainty estimates.

Date Created
2013-10-24
Agent

Gardening in the Desert: A Spatial Optimization Approach to Locating Gardens in Rapidly Expanding Urban Environments

127904-Thumbnail Image.png
Description

Background: Food access is a global issue, and for this reason, a wealth of studies are dedicated to understanding the location of food deserts and the benefits of urban gardens. However, few studies have linked these two strands of research

Background: Food access is a global issue, and for this reason, a wealth of studies are dedicated to understanding the location of food deserts and the benefits of urban gardens. However, few studies have linked these two strands of research together to analyze whether urban gardening activity may be a step forward in addressing issues of access for food desert residents.

Methods: The Phoenix, Arizona metropolitan area is used as a case to demonstrate the utility of spatial optimization models for siting urban gardens near food deserts and on vacant land. The locations of urban gardens are derived from a list obtained from the Maricopa County Cooperative Extension office at the University of Arizona which were geo located and aggregated to Census tracts. Census tracts were then assigned to one of three categories: tracts that contain a garden, tracts that are immediately adjacent to a tract with a garden, and all other non-garden on-adjacent census tracts. Analysis of variance is first used to ascertain whether there are statistical differences in the demographic, socio-economic, and land use profiles of these three categories of tracts. A maximal covering spatial optimization model is then used to identify potential locations for future gardening activities. A constraint of these models is that gardens be located on vacant land, which is a growing problem in rapidly urbanizing environments worldwide.

Results: The spatial analysis of garden locations reveals that they are centrally located in tracts with good food access. Thus, the current distribution of gardens does not provide an alternative food source to occupants of food deserts. The maximal covering spatial optimization model reveals that gardens could be sited in alternative locations to better serve food desert residents. In fact, 53 gardens may be located to cover 96.4% of all food deserts. This is an improvement over the current distribution of gardens where 68 active garden sites provide coverage to a scant 8.4% of food desert residents.

Conclusion: People in rapidly urbanizing environments around the globe suffer from poor food access. Rapid rates of urbanization also present an unused vacant land problem in cities around the globe. This paper highlights how spatial optimization models can be used to improve healthy food access for food desert residents, which is a critical first step in ameliorating the health problems associated with lack of healthy food access including heart disease and obesity.

Date Created
2017-10-16
Agent

From Correlation Functions to Event Shapes

127905-Thumbnail Image.png
Description

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a nontrivial analytic continuation which, in the framework of CFT, can be performed elegantly in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N = 4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N = 4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N = 4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N = 4SYM that should be valid at any coupling and away from the planar limit.

Date Created
2014-04-30
Agent

Fire Data as Proxy for Anthropogenic Landscape Change in the Yucatán

130257-Thumbnail Image.png
Description
Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that

Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which involves the use of fire. This research characterizes land use systems and land cover changes in the Yucatán during the 2000–2010 time period. We used an active fire remotely sensed data time series from the Moderate Resolution Imaging Spectroradiometer (MODIS), in combination with forest loss, and anthrome map sources to (1) establish the association between fire and land use change in the region; and (2) explore links between the spatial and temporal patterns of fire and specific types of land use practices, including within- and between-anthromes variability. A spatial multinomial logit model was constructed using fire, landscape configuration, and a set of commonly used control variables to estimate forest persistence, non-forest persistence, and change. Cross-tabulations and descriptive statistics were used to explore the relationships between fire occurrence, location, and timing with respect to the geography of land use. We also compared fire frequencies within and between anthrome groups using a negative binomial model and Tukey pairwise comparisons. Results show that fire data broadly reproduce the geography and timing of anthropogenic land change. Findings indicate that fire and landscape configuration is useful in explaining forest change and non-forest persistence, especially in fragmented (mosaicked) landscapes. Absence of fire occurrence is related usefully to the persistence of spatially continuous core areas of older growth forest. Fire has a positive relationship with forest to non-forest change and a negative relationship with forest persistence. Fire is also a good indicator to distinguish between anthrome groups (e.g., croplands and villages). Our study suggests that active fire data series are a reasonable proxy for anthropogenic land persistence/change in the context of the Yucatán and are useful to differentiate quantitatively and qualitatively between and within anthromes.
Date Created
2017-09-12
Agent

Finite Size Effect on the Structural and Magnetic Properties of MnAs/GaAs(001) Patterned Microstructures Thin Films

127908-Thumbnail Image.png
Description

MnAs epitaxial thin films on GaAs(001) single crystalline substrates crystallize at room temperature (RT) in a mixture of two crystalline phases with distinct magnetic properties, organized as stripes along the MnAs [0001] direction. This particular morphology is driven by anisotropic

MnAs epitaxial thin films on GaAs(001) single crystalline substrates crystallize at room temperature (RT) in a mixture of two crystalline phases with distinct magnetic properties, organized as stripes along the MnAs [0001] direction. This particular morphology is driven by anisotropic epitaxial strain. We elucidate here the physical mechanisms at the origin of size reduction effect on the MnAs crystalline phase transition. We investigated the structural and magnetic changes in MnAs patterned microstructures (confined geometry) when the lateral dimension is reduced to values close to the periodicity and width of the stripes observed in continuous films. The effects of the microstructure’s lateral size, shape and orientation (with respect to the MnAs [1120] direction) were characterized by local probe synchrotron X-ray diffraction (μ-XRD) using a focused X-ray beam, X-ray Magnetic Circular Dichroïsm - Photo Emission Electron Microscopy (XMCD-PEEM) and Low Energy Electron Microscopy (LEEM). Changes in the transition temperature and the crystalline phase distribution inside the microstructures are evidenced and quantitatively measured. The effect of finite size and strain relaxation on the magnetic domain structure is also discussed. Counter-intuitively, we demonstrate here that below a critical microstructure size, bulk MnAs structural and magnetic properties are restored. To support our observations we developed, tested and validated a model based on the size-dependence of the elastic energy and strain relaxation to explain this phase re-distribution in laterally confined geometry.

Date Created
2017-12-05
Agent

Fermionic Pentagons and NMHV Hexagon

127909-Thumbnail Image.png
Description

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

Date Created
2015-03-05
Agent

FBXW8-Dependent Degradation of MRFAP1 in Anaphase Controls Mitotic Cell Death

127910-Thumbnail Image.png
Description

Mof4 family associated protein 1 (MRFAP1) is a 14 kDa nuclear protein, which involves in maintaining normal histone modification levels by negatively regulating recruitment of the NuA4 (nucleosome acetyltransferase of H4) histone acetyltransferase complex to chromatin. MRFAP1 has been identified

Mof4 family associated protein 1 (MRFAP1) is a 14 kDa nuclear protein, which involves in maintaining normal histone modification levels by negatively regulating recruitment of the NuA4 (nucleosome acetyltransferase of H4) histone acetyltransferase complex to chromatin. MRFAP1 has been identified as one of the most up-regulated proteins after NEDD8 (neural precursor cell expressed developmentally down- regulated 8) inhibition in multiple human cell lines. However, the biological function of MRFAP1 and the E3 ligase that targets MRFAP1 for destruction remain mysterious. Here we show, by using an immunoprecipitation-based proteomics screen, that MRFAP1 is an interactor of the F-box protein FBXW8. MRFAP1 is degraded by means of the ubiquitin ligase Cul7/FBXW8 during mitotic anaphase-telophase transition and accumulated in mitotic metaphase. Overexpression of FBXW8 increased the polyubiquitination and decreased the stability of MRFAP1, whereas knockdown of FBXW8 prolonged the half-life of MRFAP1. Moreover, forced expression of MRFAP1 in HeLa cells caused growth retardation and genomic instability, leading to severe mitotic cell death. Thus, Cul7/FBXW8-mediated destruction of MRFAP1 is a regulatory component monitoring the anaphase-telophase transition and preventing genomic instability.

Date Created
2017-10-12
Agent

Experimental Adaptation of Human Echovirus 11 to Ultraviolet Radiation Leads to Resistance to Disinfection and Ribavirin

127912-Thumbnail Image.png
Description

Ultraviolet light in the UVC range is a commonly used disinfectant to control viruses in clinical settings and water treatment. However, it is currently unknown whether human viral pathogens may develop resistance to such stressor. Here, we investigate the adaptation

Ultraviolet light in the UVC range is a commonly used disinfectant to control viruses in clinical settings and water treatment. However, it is currently unknown whether human viral pathogens may develop resistance to such stressor. Here, we investigate the adaptation of an enteric pathogen, human echovirus 11, to disinfection by UVC, and characterized the underlying phenotypic and genotypic changes. Repeated exposure to UVC lead to a reduction in the UVC inactivation rate of approximately 15 per cent compared to that of the wild-type and the control populations. Time-series next-generation sequencing data revealed that this adaptation to UVC was accompanied by a decrease in the virus mutation rate. The inactivation efficiency of UVC was additionally compromised by a shift from first-order to biphasic inactivation kinetics, a form of ‘viral persistence’ present in the UVC resistant and control populations. Importantly, populations with biphasic inactivation kinetics also exhibited resistance to ribavirin, an antiviral drug that, as UVC, interferes with the viral replication. Overall, the ability of echovirus 11 to adapt to UVC is limited, but it may have relevant consequences for disinfection in clinical settings and water treatment plants.

Date Created
2017-11-20
Agent

Event Shapes in N = 4 Super-Yang-Mills Theory

127914-Thumbnail Image.png
Description

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N = 4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N = 4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.

Date Created
2014-04-30
Agent

Effects of a 5-HT1B Receptor Agonist on Locomotion and Reinstatement of Cocaine-Conditioned Place Preference After Abstinence From Repeated Injections in Mice

127920-Thumbnail Image.png
Description

5-HT1B receptors (5-HT1BRs) modulate behavioral effects of cocaine. Here we examined the effects of the 5-HT1BR agonist 5-propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine (CP94253) on spontaneous and cocaine-induced locomotion and on cocaine-primed reinstatement of conditioned place preference (CPP) in male mice given daily repeated injections

5-HT1B receptors (5-HT1BRs) modulate behavioral effects of cocaine. Here we examined the effects of the 5-HT1BR agonist 5-propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine (CP94253) on spontaneous and cocaine-induced locomotion and on cocaine-primed reinstatement of conditioned place preference (CPP) in male mice given daily repeated injections of either saline or cocaine (15 mg/kg, IP) for 20 days. In the locomotor activity experiment, testing occurred both 1 and 20 days after the final injection. In the CPP experiment, mice underwent conditioning procedures while receiving the last of their daily injections, which were given either during or ≥2 h after CPP procedures. The CPP procedural timeline consisted of baseline preference testing (days 12–13 of the chronic regimen), conditioning (days 14–19, 2 daily 30-min sessions separated by 5 h), CPP test (day 21), extinction (days 22–34; no injections), CPP extinction test (day 35), and reinstatement test (day 36). Mice that had not extinguished received additional extinction sessions prior to reinstatement testing on day 42.

On test days, mice were pretreated with either saline or CP94253 (10 mg/kg, IP). Testing began 30 min later, immediately after mice were primed with either saline or cocaine (5 mg/kg for locomotion; 15 mg/kg for reinstatement). We found that CP94253 increased spontaneous locomotion in mice receiving repeated injections of either saline or cocaine when tested 1 day after the last injection, but had no effect on spontaneous locomotion after 20 days abstinence from repeated injections. Surprisingly, cocaine-induced locomotion was sensitized regardless of whether the mice had received repeated saline or cocaine. CP94253 attenuated expression of the sensitized locomotion after 20 days abstinence. A control experiment in noninjected, drug-naïve mice showed that CP94253 had no effect on spontaneous or cocaine-induced locomotion. Mice reinstated cocaine-CPP when given a cocaine prime, and CP94253 pretreatment attenuated cocaine reinstatement. The findings suggest that stress from repeated saline injections and/or co-housing with cocaine-injected mice may cross-sensitize with cocaine effects on locomotion and that CP94253 attenuates these effects, as well as reinstatement of cocaine-CPP. This study supports the idea that 5-HT1BR agonists may be useful anti-cocaine medications.

Date Created
2017-10-10
Agent