The Vegetation and Flora of the Lower Verde River, Arizona

158692-Thumbnail Image.png
Description
For this study, the flora of the northern section of the Lower Verde River, within the Tonto National Forest in Yavapai and Gila Counties, Arizona was documented and analyzed. The study site, part of the northern leading edge of the

For this study, the flora of the northern section of the Lower Verde River, within the Tonto National Forest in Yavapai and Gila Counties, Arizona was documented and analyzed. The study site, part of the northern leading edge of the Sonoran Desert, encompasses about 16,000 hectares and is located approximately 45 miles north-northeast of Phoenix. The area, extends roughly 28 river miles from the East Verde River in the north to Chalk Mountain in the south and is largely only accessible by foot, or by boat, and as a result was previously extremely under-collected. Over a three-year study period, from August, 2017 to May, 2020, 835 plant specimens were collected and identified, representing 360 species which, combined with earlier herbarium specimens collected by others, resulted in 427 plant species found in the study area. The plant diversity of this remote region reflects three distinct vegetation communities: upland Sonoran Desert, perennial riparian corridor, and semi-desert grasslands. Together, these communities act as an important transition zone between the Sonoran Desert and higher elevation habitats. Perennial streams are biodiversity hotspots within the study area. For example, the 400 hectares of Red Creek that falls within the study boundaries contain 28% of the total species. The study site contains several plants of conservation importance including 12 species endemic to Arizona, 22 vulnerable or imperiled species, five US Forest Service sensitive species, and one Federally Endangered species. In order to compare the diversity of the Lower Verde River Flora to nine other similar/related floras in Arizona, a species-area curve using five different models was generated. The resulting models showed the Lower Verde River flora to be very close to, although slightly below, the species-accumulation curve which may indicate that roughly 50-100 species may yet be added to the flora. This prediction seems realistic, as there were several locations that could not be collected due to remoteness and excessive heat.
Date Created
2020
Agent

Food Plant Biogeography of the Sonoran Desert

Description
There is an ongoing debate around the extent that anthropogenic processes influence both plant species distribution dynamics and plant biodiversity patterns. Past human food use may leave a strong legacy on not only the extent that food plants are dispersed

There is an ongoing debate around the extent that anthropogenic processes influence both plant species distribution dynamics and plant biodiversity patterns. Past human food use may leave a strong legacy on not only the extent that food plants are dispersed and fill their potential geographic ranges, but also on food plant species richness in areas that have been densely populated by humans through time. The persistent legacy of plant domestication on contemporary species composition has been suggested to be significant in some regions. However, little is known about the effects that past human food use has had on the biogeography of the Sonoran Desert despite its rich cultural diversity and species richness. I used a combination of ecoinformatics, ethnobotanical, and archaeological data sources to quantitatively assess the impacts of pre-Columbian, and in some cases, more recent, human-mediated dispersal of food plants on the Sonoran Desert landscape. I found that (i) food plants do fill more of their potential geographic ranges than their un-used congeners, and that polyploidy, growth form, and life form are correlated with range filling and past food usage. I also found that (ii) both pre-Columbian and contemporary human population presence are correlated with relative food plant species richness. Thus, both past human food use and contemporary human activities may have influenced the geographic distribution of food plants at regional scales as well as species richness patterns. My research emphasizes that there is an interplay between ecological and anthropogenic processes, and that, therefore, humans must be considered as part of the landscape and included in ecological models.
Date Created
2019
Agent