In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometty (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E(is an element of)4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our work provides a new MRI analysis tool that may help presymptomatic AD research.
The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches. Using ecological momentary assessment, participants (N = 158) were trained to answer brief questionnaires on handheld PDA devices: (a) each time they ate or drank, (b) when prompted randomly, and (c) once each evening. Data were collected over 7 days for each participant. Participants reported their location (e.g., school grounds, home), mood, social environment, activities (e.g., watching TV, texting), cravings, food cues (e.g., saw a snack), and food choices. Results showed that having unhealthy snacks or sweet drinks among adolescents was associated with being at school, being with friends, feeling lonely or bored, craving a drink or snack, and being exposed to food cues. Surprisingly, sweet drink consumption was associated with exercising. Watching TV was associated with consuming sweet snacks but not with salty snacks or sweet drinks. These findings identify important environmental and intrapersonal cues to poor snacking choices that may be applied to interventions designed to disrupt these food-related, cue-behavior linked habits.
There is a critical need for more accurate, highly sensitive and specific assay for disease diagnosis and management. A novel, multiplexed, single sensor using rapid and label free electrochemical impedance spectroscopy tuning method has been developed. The key challenges while monitoring multiple targets is frequency overlap. Here we describe the methods to circumvent the overlap, tune by use of nanopartide (NP) and discuss the various fabrication and characterization methods to develop this technique. First sensors were fabricated using printed circuit board (PCB) technology and nickel and gold layers were electrodeposited onto the PCB sensors. An off-chip conjugation of gold NP's to molecular recognition elements (with verification technique) is described as well. A standard covalent immobilization of the molecular recognition elements is also discussed with quality control techniques. Finally use and verification of sensitivity and specificity is also presented. By use of gold NP's of various sizes, we have demonstrated the possibility and shown little loss of sensitivity and specificity in the molecular recognition of inflammatory markers as "model" targets for our tuning system. By selection of other sized NP's or NP's of various materials, the tuning effect can be further exploited. The novel platform technology developed could be utilized in critical care, clinical management and at home health and disease management.
Purpose: The purpose of this paper is to review what we know - and don't know - about Generation Y's use of social media and to assess the implications for individuals, firms and society.
Design/Methodology/Approach: The paper distinguishes Generation Y from other cohorts in terms of systematic differences in values, preferences and behavior that are stable over time (as opposed to maturational or other differences). It describes their social media use and highlights evidence of intra-generational variance arising from environmental factors (including economic, cultural, technological and political/legal factors) and individual factors. Individual factors include stable factors (including socio-economic status, age and lifecycle stage) and dynamic, endogenous factors (including goals, emotions, and social norms). The paper discusses how Generation Y's use of social media influences individuals, firms and society. It develops managerial implications and a research agenda.
Findings: Prior research on the social media use of Generation Y raises more questions than it answers. It: focuses primarily on the USA and/or (at most) one other country, ignoring other regions with large and fast-growing Generation Y populations where social-media use and its determinants may differ significantly; tends to study students whose behaviors may change over their life cycle stages; relies on self-reports by different age groups to infer Generation Y's social media use; and does not examine the drivers and outcomes of social-media use. This paper's conceptual framework yields a detailed set of research questions.
Originality/Value: This paper provides a conceptual framework for considering the antecedents and consequences of Generation Y's social media usage. It identifies unanswered questions about Generation Y's use of social media, as well as practical insights for managers.
Based on the density functional theory, the band structure and optical absorption of the isovalent sulfur-doped hematite alpha-Fe2O3 are studied systematically. The results show that the band gap of alpha-Fe2O3-xSx decreases monotonically with increasing the sulfur concentration, resulting in an obvious increase of the optical absorption edge in the visible range. Most intriguingly, unlike the pure alpha-Fe2O3 material, the alpha-Fe2O3-xSx with x approximate to 0.17 (S concentration of similar to 5.6%) exhibits a direct band gap of an ideal value (similar to 1.45 eV), together with high optical absorption (similar to 10(5) cm(-1)) and lower carriers effective masses. These results indicate that alpha-Fe2O3-xSx, with a proper concentration of sulfur, may serve as a promising candidate for low-cost solar-cell materials.
Information systems research is replete with examples of the importance of business processes defining IT adoption. Business processes are influenced by both organizational and operational concerns. We evaluate the comparative importance of operational and organizational influences for complementary IT systems. In the context of acute-care hospitals the analysis shows that an organizational approach to automating a process is related to different financial outcomes than an operational approach. Six complementary systems supporting a three-stage medication management process are studied: prescribing, dispensing, and administration. The analysis uses firm-level, panel data extracted from the HIMSS Analytics database spanning ten years of IT adoption for 140 hospitals. We have augmented the HIMSS dataset with matching demographic and financial details from the American Hospital Association and the Centers for Medicare and Medicaid Services. Using event sequence analysis we explore whether organizations are more likely to adopt organization boundary spanning systems and if the sequence of adoption follows the temporal ordering of the business process steps. The research also investigates if there is a relationship between the paths to IT adoption and financial performance. Comparison of the two measures suggests that the organizational model of adoption is observed more often in the data. Following the organizational model of adoption is associated with approximately $155 dollar increase in net income per patient day; whereas the operational model of adoption is associated with approximately $225 dollars decrease in net income per patient day. However, this effect diminishes with the adoption of each additional system thus demonstrating that the adoption path effects may only be relevant in the short-term.
Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 +/- 127 ng/g dry weight (dw)] was the most abundant PFAS detected in biosolids composites representing 32 U.S. states and the District of Columbia, followed by perfluorooctanoate [PFOA; 34 +/- 22 ng/g dw] and perfluorodecanoate [PFDA; 26 +/- 20 ng/g dw]. Mean concentrations in U.S. biosolids of the remaining ten PFASs ranged between 2 and 21 ng/g dw. Interestingly, concentrations of PFOS determined here in biosolids collected prior to the phase-out period (2002) were similar to levels reported in the literature for recent years. The mean load of Sigma PFASs in U.S. biosolids was estimated at 2749-3450 kg/year, of which about 1375-2070 kg is applied on agricultural land and 467-587 kg goes to landfills as an alternative disposal route. This study informs the risk assessment of PFASs by furnishing national inventories of PFASs occurrence and environmental release via biosolids application on land.
To begin accounting for cultural and contextual factors related to child rearing among Mexican American parents we examined whether parents' Mexican American cultural values and perceptions of neighborhood danger influenced patterns of parenting behavior in two-parent Mexican-origin families living in the U. S. To avoid forcing Mexican American parents into a predefined model of parenting styles, we used latent profile analysis to identify unique patterns of responsiveness and demandingness among mothers and fathers. Analyses were conducted using parent self-reports on parenting and replicated with youth reports on mothers' and fathers' parenting. Across reporters, most mothers and fathers exhibited a pattern of responsiveness and demandingness consistent with authoritative parenting. A small portion of parents exhibited a pattern of less-involved parenting. None of the patterns were indicative of authoritarianism. There was a modicum of evidence for no nonsense parenting among fathers. Both neighborhood danger and parents' cultural values were associated with the likelihood of employing one style of parenting over another. The value of using person-centered analytical techniques to examine parenting among Mexican Americans is discussed.
In this paper, we study distributed scheduling in multihop multiple-input-multiple-output (MIMO) networks. We first develop a "MIMO-pipe" model that provides the upper layers a set of rates and signal-to-interference-plus-noise ratio (SINR) requirements that capture the rate-reliability tradeoff in MIMO communications. The main thrust of this paper is then dedicated to developing distributed carrier sense multiple access (CSMA) algorithms for MIMO-pipe scheduling under the SINR interference model. We choose the SINR model over the extensively studied protocol-based interference models because it more naturally captures the impact of interference in wireless networks. The coupling among the links caused by the interference under the SINR model makes the problem of devising distributed scheduling algorithms very challenging. To that end, we explore the CSMA algorithms for MIMO-pipe scheduling from two perspectives. We start with an idealized continuous-time CSMA network, where control messages can be exchanged in a collision-freemanner, and devise a CSMA-based link scheduling algorithm that can achieve throughput optimality under the SINR model. Next, we consider a discrete-time CSMA network, where the message exchanges suffer from collisions. For this more challenging case, we develop a "conservative" scheduling algorithm by imposing a more stringent SINR constraint on the MIMO-pipe model. We show that the proposed conservative scheduling achieves an efficiency ratio bounded from below.
Land cover change in watersheds affects the supply of a number of ecosystem services, including water supply, the production of timber and nontimber forest products, the provision of habitat for forest species, and climate regulation through carbon sequestration. The Panama Canal watershed is currently being reforested to protect the dry-season flows needed for Canal operations. Whether reforestation of the watershed is desirable depends on its impacts on all services. We develop a spatially explicit model to evaluate the implications of reforestation both for water flows and for other services. We find that reforestation does not necessarily increase water supply, but does increase carbon sequestration and timber production.