Matching Items (43,917)
128396-Thumbnail Image.png
Description

Background: While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to

Background: While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals.

Methods: We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation.
Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated “social relationships” and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated.

Discussion: In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions.

Contributors Campenni, Marco (Author) / Schino, Gabriele (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2016-03-15
128397-Thumbnail Image.png
Description

The coastal environments of South Africa’s Cape Floristic Region (CFR) provide some of the earliest and most abundant evidence for the emergence of cognitively modern humans. In particular, the south coast of the CFR provided a uniquely diverse

The coastal environments of South Africa’s Cape Floristic Region (CFR) provide some of the earliest and most abundant evidence for the emergence of cognitively modern humans. In particular, the south coast of the CFR provided a uniquely diverse resource base for hunter-gatherers, which included marine shellfish, game, and carbohydrate-bearing plants, especially those with Underground Storage Organs (USOs). It has been hypothesized that these resources underpinned the continuity of human occupation in the region since the Middle Pleistocene. Very little research has been conducted on the foraging potential of carbohydrate resources in the CFR. This study focuses on the seasonal availability of plants with edible carbohydrates at six-weekly intervals over a two-year period in four vegetation types on South Africa’s Cape south coast. Different plant species were considered available to foragers if the edible carbohydrate was directly (i.e. above-ground edible portions) or indirectly (above-ground indications to below-ground edible portions) visible to an expert botanist familiar with this landscape. A total of 52 edible plant species were recorded across all vegetation types. Of these, 33 species were geophytes with edible USOs and 21 species had aboveground edible carbohydrates. Limestone Fynbos had the richest flora, followed by Strandveld, Renosterveld and lastly, Sand Fynbos. The availability of plant species differed across vegetation types and between survey years. The number of available USO species was highest for a six-month period from winter to early summer (Jul–Dec) across all vegetation types. Months of lowest species’ availability were in mid-summer to early autumn (Jan–Apr); the early winter (May–Jun) values were variable, being highest in Limestone Fynbos. However, even during the late summer carbohydrate “crunch,” 25 carbohydrate bearing species were visible across the four vegetation types. To establish a robust resource landscape will require additional spatial mapping of plant species abundances. Nonetheless, our results demonstrate that plant-based carbohydrate resources available to Stone Age foragers of the Cape south coast, especially USOs belonging to the Iridaceae family, are likely to have comprised a reliable and nutritious source of calories over most of the year.

Contributors De Vynck, Jan C. (Author) / Cowling, Richard M. (Author) / Potts, Alastair J. (Author) / Marean, Curtis (Author) / School of Human Evolution and Social Change (Contributor)
Created 2016-02-18
128398-Thumbnail Image.png
Description

The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose

The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland–Altman plots revealed poor validity for the modified Thomas test’s ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86–54.87]) and a specificity of 57.14% (95% CI [18.41–90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle.

Contributors Vigotsky, Andrew (Author) / Lehman, Gregory J. (Author) / Beardsley, Chris (Author) / Contreras, Bret (Author) / Chung, Bryan (Author) / Feser, Erin (Author) / College of Health Solutions (Contributor)
Created 2016-08-11
128399-Thumbnail Image.png
Description

Environmental niche modeling (ENM) is commonly used to develop probabilistic maps of species distribution. Among available ENM techniques, MaxEnt has become one of the most popular tools for modeling species distribution, with hundreds of peer-reviewed articles published each

Environmental niche modeling (ENM) is commonly used to develop probabilistic maps of species distribution. Among available ENM techniques, MaxEnt has become one of the most popular tools for modeling species distribution, with hundreds of peer-reviewed articles published each year. MaxEnt’s popularity is mainly due to the use of a graphical interface and automatic parameter configuration capabilities. However, recent studies have shown that using the default automatic configuration may not be always appropriate because it can produce non-optimal models; particularly when dealing with a small number of species presence points. Thus, the recommendation is to evaluate the best potential combination of parameters (feature classes and regularization multiplier) to select the most appropriate model. In this work we reviewed 244 articles published between 2013 and 2015 to assess whether researchers are following recommendations to avoid using the default parameter configuration when dealing with small sample sizes, or if they are using MaxEnt as a “black box tool.” Our results show that in only 16% of analyzed articles authors evaluated best feature classes, in 6.9% evaluated best regularization multipliers, and in a meager 3.7% evaluated simultaneously both parameters before producing the definitive distribution model. We analyzed 20 articles to quantify the potential differences in resulting outputs when using software default parameters instead of the alternative best model. Results from our analysis reveal important differences between the use of default parameters and the best model approach, especially in the total area identified as suitable for the assessed species and the specific areas that are identified as suitable by both modelling approaches. These results are worrying, because publications are potentially reporting over-complex or over-simplistic models that can undermine the applicability of their results. Of particular importance are studies used to inform policy making. Therefore, researchers, practitioners, reviewers and editors need to be very judicious when dealing with MaxEnt, particularly when the modelling process is based on small sample sizes.

Created 2017-03-14
Contributors Johnson, Michael (Performer) / Di Russo, Michelle (Conductor) / ASU Library. Music Library (Publisher)
Created 2018-11-08
128400-Thumbnail Image.png
Description

Background: Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the

Background: Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis), a species sensitive to host stress (Bailey & Coe, 2004). Exposure to gut bacteria like B. infantisduring critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis, we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut.

Methods: This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS) solution or deionized, distilled water. Gastrointestinal (GI) tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR) was used to quantify and compare the amount of Bifidobacterium, Bacteroides, Bacteroidetes, and Firmicutes.

Results: Our results demonstrate a significant difference between the amount of Firmicutes in pups receiving water passively and those receiving FOS actively (p-value = 0.009). Additionally, we found significant differences between the fecal microbiota from handled and non-handled mouse pups.

Discussion: From our results, we conclude even handling pups for experimental purposes, without gavage, may induce enough stress to alter the murine gut microbiota profile. We suggest further studies to examine potential stress effects on gut microbiota caused by experimental techniques. Stress from experimental techniques may need to be accounted for in future gut microbiota studies.

Contributors Allen-Blevins, Cary R. (Author) / You, Xiaomeng (Author) / Hinde, Katie (Author) / Sela, David A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2017-01-11
128401-Thumbnail Image.png
Description

Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely

Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

Contributors Thessen, Anne E. (Author) / Bunker, Daniel E. (Author) / Buttigieg, Pier Luigi (Author) / Cooper, Laurel D. (Author) / Dahdul, Wasila M. (Author) / Domisch, Sami (Author) / Franz, Nico (Author) / Jaiswal, Pankaj (Author) / Lawrence-Dill, Carolyn J. (Author) / Midford, Peter E. (Author) / Mungall, Christopher J. (Author) / Ramirez, Martin J. (Author) / Specht, Chelsea D. (Author) / Vogt, Lars (Author) / Aldo Vos, Rutger (Author) / Walls, Ramona L. (Author) / White, Jeffrey W. (Author) / Zhang, Guanyang (Author) / Deans, Andrew R. (Author) / Huala, Eva (Author) / Lewis, Suzanna E. (Author) / Mabee, Paula M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2015-12-14
128402-Thumbnail Image.png
Description

Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load.

Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

Contributors Vigotsky, Andrew (Author) / Feser, Erin (Author) / David Russell, Ryan (Author) / Contreras, Bret (Author) / College of Health Solutions (Contributor)
Created 2015-01-06
128403-Thumbnail Image.png
Description

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends

Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized measure of gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the common description of neighborhood size as a measure of an effective, local panmictic population is valid for popular families of dispersal distributions. We further show how to draw random variables from the triangular distribution efficiently and argue that it should be utilized in other studies in which computational efficiency is important.

Contributors Furstenau, Tara (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2016-03-29
128423-Thumbnail Image.png
Description

Assortative mating has been suggested to result in an increase in heritability and additive genetic variance through an increase in linkage disequilibrium. The impact of assortative mating on linkage disequilibrium was explicitly examined for the two-locus model of

Assortative mating has been suggested to result in an increase in heritability and additive genetic variance through an increase in linkage disequilibrium. The impact of assortative mating on linkage disequilibrium was explicitly examined for the two-locus model of Wright (1921) and two selective assortative mating models. For the Wright (1921) model, when the proportion of assortative mating was high, positive linkage disequilibrium was generated. However, when the proportion of assortative mating was similar to that found in some studies, the amount of linkage disequilibrium was quite low. In addition, the amount of linkage disequilibrium was independent of the level of recombination. For two selective assortative models, the amount of linkage disequilibrium was a function of the amount of recombination. For these models, the linkage disequilibrium generated was negative mainly because repulsion heterozygotes were favored over coupling heterozygotes. From these findings, the impact of assortative mating on linkage disequilibrium, and consequently heritability and additive genetic variance, appears to be small and model-specific.

Contributors Hedrick, Philip (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2017-01-01