Background: Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event, has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory response to diffuse traumatic brain injury potentiates persistent pain through prolonged immune dysregulation.
Results: To test this, adult, male C57BL/6 mice were subjected to midline fluid percussion brain injury or to sham procedure. One cohort of mice was analyzed for inflammation-related cytokine levels in cortical biopsies and serum along an acute time course. In a second cohort, peripheral inflammation was induced seven days after surgery/injury with an intraplantar injection of carrageenan. This was followed by measurement of mechanical hyperalgesia, glial fibrillary acidic protein and Iba1 immunohistochemical analysis of neuroinflammation in the brain, and flow cytometric analysis of T-cell differentiation in mucosal lymph. Traumatic brain injury increased interleukin-6 and chemokine ligand 1 levels in the cortex and serum that peaked within 1–9 h and then resolved. Intraplantar carrageenan produced mechanical hyperalgesia that was potentiated by traumatic brain injury. Further, mucosal T cells from brain-injured mice showed a distinct deficiency in the ability to differentiate into inflammation-suppressing regulatory T cells (Tregs).
Conclusions: We conclude that traumatic brain injury increased the inflammatory pain associated with cutaneous inflammation by contributing to systemic immune dysregulation. Regulatory T cells are immune suppressors and failure of T cells to differentiate into regulatory T cells leads to unregulated cytokine production which may contribute to the potentiation of peripheral pain through the excitation of peripheral sensory neurons. In addition, regulatory T cells are identified as a potential target for therapeutic rebalancing of peripheral immune homeostasis to improve functional outcome and decrease the incidence of peripheral inflammatory pain following traumatic brain injury.
Reflections of the Social Environment in Chimpanzee Memory: Applying Rational Analysis Beyond Humans
In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees (Pan troglodytes) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, the frequency of past encounters in chimpanzees linearly predicted future encounters, and the recency of past encounters predicted future encounters with a power function. Consistent with the rational analyses carried out for human memory, these findings suggest that chimpanzee memory performance should reflect those environmental regularities. In re-analysing existing chimpanzee memory data, we found that chimpanzee memory patterns mirrored their social contact patterns. Our findings hint that human and chimpanzee memory systems may have evolved to solve similar information-processing problems. Overall, rational analysis offers novel theoretical and methodological avenues for the comparative study of cognition.
In many social mammals, females who form close, differentiated bonds with others experience greater offspring survival and longevity. We still know little, however, about how females' relationships are structured within the social group, or whether connections beyond the level of the dyad have any adaptive value. Here, we apply social network analysis to wild baboons in order to evaluate the comparative benefits of dyadic bonds against several network measures. Results suggest that females with strong dyadic bonds also showed high eigenvector centrality, a measure of the extent to which an individual's partners are connected to others in the network. Eigenvector centrality was a better predictor of offspring survival than dyadic bond strength. Previous results have shown that female baboons derive significant fitness benefits from forming close, stable bonds with several other females. Results presented here suggest that these benefits may be further augmented if a female's social partners are themselves well connected to others within the group rather than being restricted to a smaller clique.
Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks.
We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.
Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays. A standard triangularization algorithm can then be employed to find the physical locations of the nodes in the network. We further demonstrate successful detection of a hidden node (or a hidden source or threat), from which no signal can be obtained, through accurate detection of all its neighbouring nodes. As a geospatial network has the feature that a node tends to connect with geophysically nearby nodes, the localized region that contains the hidden node can be identified.
Ecosystems transition quickly in the Anthropocene, whereas biodiversity adapts more slowly. Here we simulated a shifting woodland ecosystem on the Colorado Plateau of western North America by using as its proxy over space and time the fundamental niche of the Arizona black rattlesnake (Crotalus cerberus). We found an expansive (= end-of-Pleistocene) range that contracted sharply (= present), but is blocked topographically by Grand Canyon/Colorado River as it shifts predictably northwestward under moderate climate change (= 2080). Vulnerability to contemporary wildfire was quantified from available records, with forested area reduced more than 27% over 13 years. Both ‘ecosystem metrics' underscore how climate and wildfire are rapidly converting the Plateau ecosystem into novel habitat.
To gauge potential effects on C. cerberus, we derived a series of relevant ‘conservation metrics' (i.e. genetic variability, dispersal capacity, effective population size) by sequencing 118 individuals across 846 bp of mitochondrial (mt)DNA-ATPase8/6. We identified five significantly different clades (net sequence divergence = 2.2%) isolated by drainage/topography, with low dispersal (F[subscript ST] = 0.82) and small sizes (2N[subscript ef] = 5.2). Our compiled metrics (i.e. small-populations, topographic-isolation, low-dispersal versus conserved-niche, vulnerable-ecosystem, dispersal barriers) underscore the susceptibility of this woodland specialist to a climate and wildfire tandem. We offer adaptive management scenarios that may counterbalance these metrics and avoid the extirpation of this and other highly specialized, relictual woodland clades.
The New World assassin bug genus Zelus Fabricius, 1803 (Insecta: Hemiptera: Heteroptera: Reduviidae: Harpactorinae: Harpactorini) is revised based on more than 10,000 specimens. Seventy-one species are recognized and twenty-four described as new: Zelus aithaleos sp. n., Zelus amblycephalus sp. n., Zelus antiguensis sp. n., Zelus auralanus sp. n., Zelus bahiaensis sp. n., Zelus banksi sp. n., Zelus casii sp. n., Zelus championi sp. n., Zelus cordazulus sp. n., Zelus fuliginatus sp. n., Zelus gilboventris sp. n., Zelus gracilipes sp. n., Zelus grandoculus sp. n., Zelus kartaboides sp. n., Zelus lewisi sp. n., Zelus panamensis sp. n., Zelus paracephalus sp. n., Zelus rosulentus sp. n., Zelus russulumus sp. n., Zelus spatulosus sp. n., Zelus truxali sp. n., Zelus umbraculoides sp. n., Zelus umbraculus sp. n., and Zelus xouthos sp. n. Five species, Zelus araneiformis Haviland, 1931, Zelus gradarius Bergroth, 1905, Zelus modestus (Stål, 1862), Zelus subfasciatus Stål, 1860 and Zelus vittaticeps Stål, 1866, are removed from Zelus and placed incertae sedis within Harpactorini.
Nine new synonyms are recognized (senior synonym in parentheses): Zelus atripes Champion, 1898 syn. nov. (=Zelus conjungens [Stål, 1860]), Zelus dispar Fabricius, 1803 syn. nov. (=Zelus pedestris Fabricius, 1803), Zelus formosus Haviland, 1931 syn. nov. (=Zelus laticornis Herrich-Schaeffer, 1853), Zelus obscuridorsis (Stål, 1860) syn. nov. (=Zelus pedestris), Zelus pallidinervus Haviland, 1931 syn. nov. (=Zelus kartabensis Haviland, 1931), Zelus personatus Berg, 1879 syn. nov. (=Zelus versicolor Herrich-Schaeffer, 1848), Zelus trimaculatus Champion, 1898 syn. nov. (=Zelus means Fabricius, 1803), Zelus trimaculicollis (Stål, 1855) syn. nov. (=Zelus means), and Zelus tristis Haviland, 1931 syn. nov. (=Zelus laticornis). Zelus conjungens (Stål, 1860) stat. rev. Is resurrected from junior synonymy with zealous armillatus (Lepeletier & Seville, 1825). Zelus ambulans Stål, 1862 stat. rev. and Zelus cognatus (Costa, 1862) stat. rev. are resurrected from synonymy with Zelus exsanguis Stål, 1862. Iquitozelus Bérenger syn. nov. is synonymized with Zelus and its only species transferred to Zelus, hence resulting in a new combination, Zelus couturieri (Bérenger, 2003) comb. nov. Lectotypes, paralectotypes or neotypes are designated for a number of species.
Habitus images, illustrations of male genitalia, distribution maps and measurements are provided for nearly all species. The three previously recognized subgenera of Zelus are found to be based upon superficial characters and these divisions do not reflect natural groupings. Using sets of characters, especially those of the male genitalia, eleven species groups are proposed. It is also hypothesized that Zelus is closely related to three other New World genera: Atopozelus Elkins, Ischnoclopius Stål and an undescribed genus "Hartzelus" [manuscript name]. Zelus is endemic to the New World, occurring naturally in the Caribbean and all but one of the continental countries, with introductions to Pacific islands, Europe and Chile.
Background: Correctly identifying organisms is key to most biological research, and is especially critical in areas of biodiversity and conservation. Yet it remains one of the greatest challenges when studying all but the few well-established model systems. The challenge is in part due to the fact that most species have yet to be described, vanishing taxonomic expertise and the relative inaccessibility of taxonomic information. Furthermore, identification keys and other taxonomic resources are based on complex, taxon-specific vocabularies used to describe important morphological characters. Using these resources is made difficult by the fact that taxonomic documentation of the world's biodiversity is an international endeavor, and keys and field guides are not always available in the practitioner's native language.
New Information: To address this challenge, we have developed a publicly available on-line illustrated multilingual glossary and translation tool for technical taxonomic terms using the Symbiota Software Project biodiversity platform. Illustrations, photographs and translations have been sourced from the global community of taxonomists working with marine invertebrates and seaweeds. These can be used as single-language illustrated glossaries or to make customized translation tables. The glossary has been launched with terms and illustrations of seaweeds, tunicates, sponges, hydrozoans, sea anemones, and nemerteans, and already includes translations into seven languages for some groups. Additional translations and development of terms for more taxa are underway, but the ultimate utility of this tool depends on active participation of the international taxonomic community.
This contribution adopts the taxonomic concept annotation and alignment approach. Accordingly, and where indicated, previous and newly inferred meanings of taxonomic names are individuated according to one specific source. Articulations among these concepts and pairwise, logically consistent alignments of original and revisionary classifications are also provided, in addition to conventional nomenclatural provenance information. A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876 sec. O’Brien & Wibmer (1982), and Piscatopus Sleeper, 1960 sec. O’Brien & Wibmer (1982) (Curculionidae [non-focal]: Entiminae [non-focal]: Tanymecini [non-focal]) is presented.
Prior to this study, Minyomerus sec. O’Brien & Wibmer (1982) contained seven species, whereas the monotypic Piscatopus sec. O’Brien & Wibmer (1982) was comprised solely of P. griseus Sleeper, 1960 sec. O’Brien & Wibmer (1982). We thoroughly redescribe these recognized species-level entities and furthermore describe ten species as new to science: M. bulbifrons sec. Jansen & Franz (2015) (henceforth: [JF2015]), sp. n., M. aeriballux [JF2015], sp. n., M. cracens [JF2015], sp. n., M. gravivultus [JF2015], sp. n., M. imberbus [JF2015], sp. n., M. reburrus [JF2015], sp. n., M. politus [JF2015], sp. n., M. puticulatus [JF2015], sp. n., M. rutellirostris [JF2015], sp. n., and M. trisetosus [JF2015], sp. n. A cladistic analysis using 46 morphological characters of 22 terminal taxa (5/17 outgroup/ingroup) yielded a single most-parsimonious cladogram (L = 82, CI = 65, RI = 82).
The analysis strongly supports the monophyly of Minyomerus [JF2015] with eight unreversed synapomorphies, and places P. griseus sec. O’Brien & Wibmer (1982) within the genus as sister to M. rutellirostris [JF2015]. Accordingly, Piscatopus sec. Sleeper (1960), syn. n. is changed to junior synonymy of Minyomerus [JF2015], and its sole member P. griseus sec. Sleeper (1960) is moved to Minyomerus [JF2015] as M. griseus [JF2015], comb. n. In addition, the formerly designated type M. innocuus Horn, 1876 sec. Pierce (1913), syn. n. is changed to junior synonymy of M. microps (Say, 1831) [JF2015] which has priority. The genus is widespread throughout western North America, ranging from Canada to Mexico and Baja California. Apparent patterns of interspecific diversity of exterior and genitalic morphology, varying host plant ranges, overlapping and widely extending species distributions, suggest an early origin for Minyomerus [JF2015], with a diversification that likely followed the development of North American desert biomes. Three species in the genus – i.e., M. languidus Horn, 1876 [JF2015], M. microps [JF2015], and M. trisetosus [JF2015] – are putatively considered parthenogenetic.