Matching Items (43,917)
150365-Thumbnail Image.png
Description

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

Contributors Alossta, Abdulaziz (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created 2011
150366-Thumbnail Image.png
Description
Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different

Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore orientation impacts the potential for loading and release of selectively sized molecules. This research work aims to develop structure-property relationships to understand how pore size, geometry, and surface hydrophobicity influence the loading and release of drug molecules. In this study, the pore size is systematically varied by incorporating pore-swelling agent of polystyrene oligomers (hPS) to soft templated mesoporous carbon films fabricated by cooperative assembly of poly(styrene-block-ethylene oxide) (SEO) with phenolic resin. To examine the impact of morphology, different compositions of amphiphilic triblock copolymer templates, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO), are used to form two-dimensional hexagonal and cubic mesostructures. Lastly, the carbonization temperature provides a handle to tune the hydrophobicity of the film. These mesoporous films are then utilized to understand the uptake and release of a model drug Mitoxantrone dihydrochloride from nanostructured materials. The largest pore size (6nm) mesoporous carbon based on SEO exhibits the largest uptake (3.5μg/cm2); this is attributed to presence of larger internal volume compared to the other two films. In terms of release, a controlled response is observed for all films with the highest release for the 2nm cubic film (1.45 μg/cm2) after 15 days, but this is only 56 % of the drug loaded. Additionally, the surface hydrophobicity impacts the fraction of drug release with a decrease from 78% to 43%, as the films become more hydrophobic when carbonized at higher temperatures. This work provides a model system to understand how pore morphology, size and chemistry influence the drug loading and release for potential implant applications.
Contributors Labiano, Alpha (Author) / Vogt, Bryan (Thesis advisor) / Rege, Kaushal (Committee member) / Dai, Lenore (Committee member) / Potta, Thrimoorthy (Committee member) / Arizona State University (Publisher)
Created 2011
150414-Thumbnail Image.png
Description
This study follows three secondary teachers as they facilitate a digital storytelling project with their students for the first time. All three teachers were not specifically trained in digital storytelling in order to investigate what happens when a

This study follows three secondary teachers as they facilitate a digital storytelling project with their students for the first time. All three teachers were not specifically trained in digital storytelling in order to investigate what happens when a digital storytelling novice tries to do a project like this with his or her students. The study follows two high school English teachers and one middle school math teacher. Each teacher's experience is shared in a case study, and all three case studies are compared and contrasted in a cross-case analysis. There is a discussion of the types of projects the teachers conducted and any challenges they faced. Strategies to overcome the challenges are also included. A variety of assessment rubrics are included in the appendix. In the review of literature, the history of digital storytelling is illuminated, as are historical concepts of literacy. There is also an exploration of twenty-first century skills including multiliteracies such as media and technology literacy. Both the teachers and their students offer suggestions to future teachers taking on digital storytelling projects. The dissertation ends with a discussion of future scholarship in educational uses of digital storytelling.
Contributors Gordon, Corrine (Author) / Blasingame, James (Thesis advisor) / Nilsen, Alleen P (Committee member) / Early, Jessica (Committee member) / Marsh, Josephine (Committee member) / Arizona State University (Publisher)
Created 2011
150415-Thumbnail Image.png
Description
ABSTRACT This study evaluated the LoseIt Smart Phone app by Fit Now Inc. for nutritional quality among users during an 8 week behavioral modification weight loss protocol. All participants owned smart phones and were cluster randomized to either

ABSTRACT This study evaluated the LoseIt Smart Phone app by Fit Now Inc. for nutritional quality among users during an 8 week behavioral modification weight loss protocol. All participants owned smart phones and were cluster randomized to either a control group using paper and pencil record keeping, a memo group using a memo function on their smart phones, or the LoseIt app group which was composed of the participants who owned iPhones. Thirty one participants completed the study protocol: 10 participants from the LoseIt app group, 10 participants from the memo group, and 11 participants from the paper and pencil group. Food records were analyzed using Food Processor by ESHA and the nutritional quality was scored using the Healthy Eating Index - 2005 (HEI-2005). Scores were compared using One-Way ANOVA with no significant changes in any category across all groups. Non-parametric statistics were then used to determine changes between combined memo and paper and pencil groups and the LoseIt app group as the memo and paper and pencil group received live counseling at biweekly intervals and the LoseIt group did not. No significant difference was found in HEI scores across all categories, however a trend was noted for total HEI score with higher scores among the memo and paper and pencil group participants p=0.091. Conclusion, no significant difference was detected between users of the smart phone app LoseIt and memo and paper and pencil groups. More research is needed to determine the impact of in-person counseling versus user feedback provided with the LoseIt smart phone app.
Contributors Cowan, David Kevin (Author) / Johnston, Carol (Thesis advisor) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created 2011
150416-Thumbnail Image.png
Description
The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to evolve independently of one another. Such linked characters are "constrained" and are expected to express covariation both within and among species. In this study, the pattern and magnitude of covariation among aspects of dental size and shape are investigated in anthropoid primates. Pleiotropy has been hypothesized to play a significant role in derivation of derived hominin morphologies. This study tests a series of hypotheses; including 1) that negative within- and among-species covariation exists between the anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and positive between the canines and incisors, 3) that there is a dimorphic pattern of within-species covariation and coevolution for characters of the canine honing complex, 4) that patterns of covariation are stable among anthropoids, and 5) that genetic constraints have been a strong bias on the diversification of anthropoid dental morphology. The study finds that patterns of variance-covariance are conserved among species. Despite these shared patterns of variance-covariance, dental diversification has frequently occurred along dimensions not aligned with the vector of genetic constraint. As regards the canine honing complex, there is no evidence for a difference in the pleiotropic organization or the coevolution of characters of the complex in males and females, which undermines arguments that the complex is selectively important only in males. Finally, there is no evidence for strong or negative pleiotropy between any dental characters, which falsifies hypotheses that predict such relationships between incisors and postcanine teeth or between the canines and the postcanine teeth.
Contributors Delezene, Lucas (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark (Committee member) / Verrelli, Brian C (Committee member) / Arizona State University (Publisher)
Created 2011
150417-Thumbnail Image.png
Description
The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried out on the minimum aspect ratio (i.e. gate length to gate-to-channel-distance ratio) that limits short channel effects in ultra-scaled GaN and InP HEMTs, indicating that this value in GaN devices is 15 while in InP devices is 7.5. This difference is believed to be related to the different dielectric properties of the two materials, and the corresponding different electric field distributions. The dielectric effects of the passivation layer in millimeter-wave, high-power GaN HEMTs are also investigated, finding that the effective gate length is increased by fringing capacitances, enhanced by the dielectrics in regions adjacent to the gate for layers thicker than 5 nm, strongly affecting the frequency performance of deep sub-micron devices. Lastly, efficient Full Band Monte Carlo particle-based device simulations of the large-signal performance of mm-wave transistor power amplifiers with high-Q matching networks are reported for the first time. In particular, a CellularMonte Carlo (CMC) code is self-consistently coupled with a Harmonic Balance (HB) frequency domain circuit solver. Due to the iterative nature of the HB algorithm, this simulation approach is possible only due to the computational efficiency of the CMC, which uses pre-computed scattering tables. On the other hand, HB allows the direct simulation of the steady-state behavior of circuits with long transient time. This work provides an accurate and efficient tool for the device early-stage design, which allows a computerbased performance evaluation in lieu of the extremely time-consuming and expensive iterations of prototyping and experimental large-signal characterization.
Contributors Guerra, Diego (Author) / Saraniti, Marco (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created 2011
150418-Thumbnail Image.png
Description
Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.
Contributors Soho, Edmé L (Author) / Wirkus, Stephen (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created 2011
150419-Thumbnail Image.png
Description
Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors affecting the reliability of solder joints is the

Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors affecting the reliability of solder joints is the presence of porosity which is introduced during processing of the joints. In this thesis, the effect of such porosity on the deformation behavior and eventual failure of the joints is studied using Finite Element (FE) modeling technique. A 3D model obtained by reconstruction of x-ray tomographic image data is used as input for FE analysis to simulate shear deformation and eventual failure of the joint using ductile damage model. The modeling was done in ABAQUS (v 6.10). The FE model predictions are validated with experimental results by comparing the deformation of the pores and the crack path as predicted by the model with the experimentally observed deformation and failure pattern. To understand the influence of size, shape, and distribution of pores on the mechanical behavior of the joint four different solder joints with varying degrees of porosity are modeled using the validated FE model. The validation technique mentioned above enables comparison of the simulated and actual deformation only. A more robust way of validating the FE model would be to compare the strain distribution in the joint as predicted by the model and as observed experimentally. In this study, to enable visualization of the experimental strain for the 3D microstructure obtained from tomography, a three dimensional digital image correlation (3D DIC) code has been implemented in MATLAB (MathWorks Inc). This developed 3D DIC code can be used as another tool to verify the numerical model predictions. The capability of the developed code in measuring local displacement and strain is demonstrated by considering a test case.
Contributors Jakkali, Vaidehi (Author) / Chawla, Nikhilesh K (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created 2011
150420-Thumbnail Image.png
Description
ABSTRACT As referenced in Navajo ceremonial prayers and songs, "Saad bee hahoozhood jini," it began harmoniously with language. This dissertation examines and celebrates in new ways the meaning of language in Navajo literature. The first chapter is an

ABSTRACT As referenced in Navajo ceremonial prayers and songs, "Saad bee hahoozhood jini," it began harmoniously with language. This dissertation examines and celebrates in new ways the meaning of language in Navajo literature. The first chapter is an introduction of this dissertation. I share my personal experiences with language, both English and Navajo, and how it has shaped me to be the person I am today as a Navajo speaker, student, educator, and professional. The second chapter contains an analysis and review of Western ideology of feminism and its place in Navajo society and a comparative study of several works written by Navajo authors, including Laura Tohe, Luci Tapahonso, and Nia Francisco, and how their creative works reflect the foundation of Navajo culture, Asdzaa Nadleehe, Changing Woman. The third chapter presents my own short fiction of Navajo characters living in today's society, a society that entails both positive and negative issues of Navajo life. These stories present realistic twenty-first century environments on the Navajo reservation. The fourth chapter consists of a short fiction written originally in the Navajo language. The story also represents the celebration of Navajo language as it thrives in today's time of tribal and cultural struggles. The sense of it being told in Navajo celebrates and preserves Navajo culture and language. The final chapter is the beginning of an oral narrative presented in written form, that of my grandmother's life story. This introduction of her story also is in itself a commemoration of language, oral Navajo language.
Contributors Wheeler, Jennifer L (Author) / Ortiz, Simon (Thesis advisor) / Tohe, Laura (Committee member) / Blasingame, James (Committee member) / Arizona State University (Publisher)
Created 2011
150421-Thumbnail Image.png
Description
Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process,

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.
Contributors Jaspreet Singh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created 2011