150404-Thumbnail Image.png
Description
As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives

As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium (Ti) in full-scale wastewater treatment plants, (2) quantify sorption of different ENMs to wastewater biomass in laboratory-scale batch reactors, (3) evaluate the use of a standard, soluble-pollutant sorption test method for quantifying ENM interaction with wastewater biomass, and (4) develop a mechanistic model of a biological wastewater treatment reactor to serve as the basis for modeling nanomaterial fate in WWTPs. Using titanium (Ti) as a model material for the fate of ENMs in WWTPs, Ti concentrations were measured in 10 municipal WWTPs. Ti concentrations in pant influent ranged from 181 to 3000 µg/L, and more than 96% of Ti was removed, with effluent Ti concentrations being less than 25 µg/L. Ti removed from wastewater accumulated in solids at concentrations ranging from 1 to 6 µg Ti/mg solids. Using transmission electron microscopy, spherical titanium oxide nanoparticles with diameters ranging from 4 to 30 nm were found in WWTP effluents, evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems. Batch experiments were conducted to quantify sorption of different ENM types to activated sludge. Percentages of sorption to 400 mg TSS/L biomass ranged from about 10 to 90%, depending on the ENM material and functionalization. Natural organic matter, surfactants, and proteins had a stabilizing effect on most of the ENMs tested. The United States Environmental Protection Agency's standard sorption testing method (OPPTS 835.1110) used for soluble compounds was found to be inapplicable to ENMs, as freeze-dried activated sludge transforms ENMs into stable particles in suspension. In conjunction with experiments, we created a mechanistic model of the microbiological processes in membrane bioreactors to predict MBR, extended and modified this model to predict the fate of soluble micropollutants, and then discussed how the micropollutant fate model could be used to predict the fate of nanomaterials in wastewater treatment plants.
Reuse Permissions


  • Download restricted.
    Download count: 1

    Details

    Title
    • Fate of engineered nanomaterials in wastewater treatment plants
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph. D., Arizona State University, 2011
    • bibliography
      Includes bibliographical references (p. 186-206)
    • Field of study: Civil and environmental engineering

    Citation and reuse

    Statement of Responsibility

    by Mehlika Ayla Kiser

    Machine-readable links