Description

Anticipatory LCA seeks to overcome the paucity of data through scenario development and thermodynamic bounding analyses. Critical components of anticipatory LCA include:
       1) Laboratory-scale inventory data collection for nano-manufacturing processes and
           preliminary performance evaluation.
   

Anticipatory LCA seeks to overcome the paucity of data through scenario development and thermodynamic bounding analyses. Critical components of anticipatory LCA include:
       1) Laboratory-scale inventory data collection for nano-manufacturing processes and
           preliminary performance evaluation.
       2) Thermodynamic modeling of manufacturing processes and developing scenarios of     
           efficiency gains informed by analogous material processing industries.
       3) Use-phase bounding to report inventory data in a functional unit descriptive of
           performance.

Together, these analyses may call attention to environmentally problematic processes or nanotechnologies before significant investments in R&D and infrastructure contribute to technology lock in. The following case study applies these components of anticipatory LCA to single wall carbon nanotube (SWCNT) manufacturing processes, compares the rapid improvements in SWCNT manufacturing to historic reductions in the embodied energy of aluminum, and discusses the use of SWCNTs as free-standing anodes in advanced lithium ion batteries.

Downloads
PDF (787.2 KB)
Download count: 4

Details

Title
  • Anticipatory Life Cycle Assessment of Single Wall Carbon Nanotube Anode Lithium Ion Batteries
Date Created
2012-05
Resource Type
  • Text
  • Collaborating institutions
    School of Sustainable Engineering and the Built Environment (SSEBE) / Center for Earth Systems Engineering and Management
    Identifier
    • Identifier Value
      SSEBE-CESEM-2012-CPR-009

    Machine-readable links