Full metadata
Title
Sample Delivery Development and Control for CXLS
Description
The Compact X-Ray Light Source (CXLS) and Compact X-Ray Free-Electron Laser (CXFEL) are two novel compact X-Ray sources that enable the study of fundamental processes in science and nature. The CXLS uses inverse Compton scattering of relativistic electrons with a high- energy infrared laser to generate X-Ray photons in a way that greatly reduces the size and cost of these machines. The X-Ray beam produced by the CXLS is delivered to an Experiment Chamber housing motorized stages, infinity-corrected optical systems, and a Montel Optic which focuses the X-Ray beam to an interaction point. This X-Ray beam can be used to take snapshots of samples at the atomic level, providing unique insight in the study of quantum materials, medicine development, and renewable energy generation. In order for experiments with the CXLS to take place, samples must be remotely delivered to this interaction point in a way that provides users with a precise view of the interaction. In order for the samples to be mounted in the Experiment Chamber, cassettes were designed and fabricated in an iterative process to accommodate a particular sample chip or set of microfluidic fittings and components. These cassettes were manufactured using a resin-based 3D printer, and the final designs were able to securely house samples and be mounted in a sample holder frame. To bring the sample to the interaction point, a stack of PI Stages and a Hexapod were brought under EPICS control. Input/Output Controllers for each device were installed on a Linux computer, exposing process variables that facilitated the development of controls interfaces. Using MATLAB, user interfaces were created via an Agile software development approach that emphasized iterative refinements and user feedback. A calibration procedure was developed to maximize the accuracy of scans performed by the stages. During testing, the software was able to successfully implement coordinate transformations to bring many different targets on a single chip to an interaction point as part of a single scan.
Date Created
2024-05
Contributors
- Dupre, Alan (Author)
- Holl, Mark (Thesis director)
- Teitelbaum, Samuel (Committee member)
- Ros, Alexandra (Committee member)
- Barrett, The Honors College (Contributor)
- School of International Letters and Cultures (Contributor)
- Mechanical and Aerospace Engineering Program (Contributor)
- Department of Physics (Contributor)
- School of Human Evolution & Social Change (Contributor)
Topical Subject
Resource Type
Extent
48 pages
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Series
Academic Year 2023-2024
Handle
https://hdl.handle.net/2286/R.2.N.193716
System Created
- 2024-05-02 05:46:09
System Modified
- 2024-06-17 05:06:51
- 6 months 1 week ago
Additional Formats