Description
Dynamic metasurface antennas (DMAs) consist of waveguides patterned with numerous metamaterial radiators loaded with switchable components (such as varactors). Byapplying different direct current (DC) signals to each element, DMAs can generate a multitude of radiation patterns ranging from directive beams

Dynamic metasurface antennas (DMAs) consist of waveguides patterned with numerous metamaterial radiators loaded with switchable components (such as varactors). Byapplying different direct current (DC) signals to each element, DMAs can generate a multitude of radiation patterns ranging from directive beams useful for wireless communication to spatially diverse ones useful for computational imaging and sensing. In this thesis, DMAs are extended to conformal configurations. Using full-wave simulation, it is shown that a conformal DMA can detect the angle of the incident signal over the horizon using a two port device at a single frequency. The design and operation of the conformal DMA will be detailed. In addition, it shows that DMAs can be implemented using a single substrate layer, significantly simplifying its structure compared to conventional multiple-layer ones. Using full-wave simulation, this thesis demonstrates a mechanism to bring DC signal to metamaterial elements without requiring an extra layer. This design can be instrumental in implementing the conformal DMA in the future AoA detection was achieved over unique diode distributions of the conformal DCMA at a 10-degree resolution. Investigations into additive noise of the simulated measured data as well as the minimum amount of diode distributions to accurately detect AoA were conducted and documented within this thesis. The single-layer DMA yielded both directive and complex patterns that allow for many potential applications. With success in bringing the DC signal to the metamaterial elements on a single-layer, further advances in conformal DMAs can be achieved.
Reuse Permissions
  • Downloads
    PDF (1.5 MB)

    Details

    Title
    • Toward Simple Dynamic Metasurface Antennas for Reconfigurable Beamforming and AoA Detection
    Contributors
    Date Created
    2024
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2024
    • Field of study: Electrical Engineering

    Machine-readable links