Full metadata
Title
Detailed Balance Analysis of Experimental High-Reflectance Back Contacts for Photovoltaics
Description
Highly reflective back surfaces are critical for reaching the detailed balance efficiency limits of photovoltaics. In addition to being highly reflective, the back surface and contact of the cell must have low resistance. A traditional approach to balance reflectance and contact resistance has been to use point contact geometries, which are process intensive. This work considers using a transparent conductive oxide and metal mirror, which, due to being two planar layers, can be fabricated much more easily. To study the tradeoff between resistance and absorptance for this contact, the oxide doping concentration is varied. Test structures to measure the doping concentration, contact resistance, and parasitic absorptance were fabricated. Using measured parameters, the performance of high-quality GaAs photonic power converters is modeled. Measurements show that although the contact resistance is comparatively high, it can be controlled through doping in the oxide and semiconductor composition. Furthermore, modeling shows the contact resistance is not prohibitively high for one-sun or lower illumination level devices. The hemispheric reflectance of the experimental oxide/metal back contact is modeled to be 96.7%, which is quite high considering that it is a conductive back contact. Although the oxide/metal contact structure does not perform electrically or optically as well as more complex point contact structures, this work indicates the advantages of the planar transparent conductive oxide/metal contact structure near one-sun equivalent current densities for solar cells and photonic power converters, where it is desirable to avoid the device fabrication costs of back contact patterning.
Date Created
2024
Contributors
- Gregory, Christopher Thomas (Author)
- King, Richard R (Thesis advisor)
- Goryll, Michael (Committee member)
- Rolston, Nicholas (Committee member)
- Alford, Terry (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
130 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.193385
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2024
Field of study: Materials Science and Engineering
System Created
- 2024-05-02 01:20:28
System Modified
- 2024-05-02 01:20:36
- 6 months 3 weeks ago
Additional Formats