Description
Large Language Models (LLMs) have displayed impressive capabilities in handling tasks that require few demonstration examples, making them effective few-shot learn- ers. Despite their potential, LLMs face challenges when it comes to addressing com- plex real-world tasks that involve multiple modalities or reasoning steps. For example, predicting cancer patients’ survival period based on clinical data, cell slides, and ge- nomics poses significant logistical complexities. Although several approaches have been proposed to tackle these challenges, they often fall short in achieving promising performance due to their inability to consider all modalities simultaneously or account for missing modalities, variations in modalities, and the integration of multi-modal data, ultimately compromising their effectiveness.This thesis proposes a novel approach for multi-modal tumor survival prediction to address these limitations. Taking inspiration from recent advancements in LLMs, particularly Mixture of Experts (MoE)-based models, a graph-guided MoE framework is introduced. This framework utilizes a graph structure to manage the predictions effectively and combines multiple models to enhance predictive power. Rather than training a single foundation model for end-to-end survival prediction, the approach leverages a MOE-guided ensemble to manage model callings as tools automatically. By leveraging the strengths of existing models and guiding them through a MOE framework, the aim is to achieve better performance and more accurate predictions in complex real-world tasks. Experiments and analysis on the TCGA-LUAD dataset show improved performance over the individual modal and vanilla ensemble models.
Details
Title
- Multi-Modal Tumor Survival Prediction via Graph-Guided Mixture of Experts
Contributors
- Mathavan, Hirthik (Author)
- Liu, Huan (Thesis advisor)
- Davulcu, Hasan (Committee member)
- Choi, YooJung (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2024
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2024
- Field of study: Computer Science