Description
Microplastics, plastics smaller than 5 mm, are an emerging concern worldwide due to their potential adverse effects on the environment and human health. Microplastics have the potential to biomagnify through the food chain, and are prone to adsorbing organic pollutants

Microplastics, plastics smaller than 5 mm, are an emerging concern worldwide due to their potential adverse effects on the environment and human health. Microplastics have the potential to biomagnify through the food chain, and are prone to adsorbing organic pollutants and heavy metals. Therefore, there is an urgent need to assess the extent of microplastic contamination in different environments. The occurrence of microplastics in the atmosphere of Tempe, AZ was investigated and results show concentrations as high as 1.1 microplastics/m3. The most abundant identified polymer was polyvinyl chloride. However, chemical characterization is fraught with challenges, with a majority of microplastics remaining chemically unidentified. Laboratory experiments simulating weathering of microplastics revealed that Raman spectra of microplastics change over time due to weathering processes. This work also studied the spatial variation of microplastics in soil in Phoenix and the surrounding areas of the Sonoran Desert, and microplastic abundances ranged from 122 to 1299 microplastics/kg with no clear trends between different locations, and substantial total deposition of microplastics occurring in the same location with resuspension and redistribution of deposited microplastics likely contributing to unclear spatial trends. Temporal variation of soil microplastics from 2005 to 2015 show a systematic increase in the abundance of microplastics. Polyethylene was prominent in all soil samples. Further, recreational surface waters were investigated as a potential source of microplastics in aquatic environments. The temporal variation of microplastics in the Salt River, AZ over the course of one day depicted an increase of 8 times in microplastic concentration at peak activity time of 16:00 hr compared to 8:00 hr. Concurrently, microplastic concentrations in surface water samples from apartment community swimming pools in Tempe, AZ depicted substantial variability with concentrations as high as 254,574 MPs/m3. Polyester and Polyamide fibers were prevalent in surface water samples, indicating a release from synthetic fabrics. Finally, a method for distinguishing tire wear microplastics from soot in ambient aerosol samples was developed using Programmed Thermal Analysis, that allows for the quantification of Elemental Carbon. The method was successfully applied on urban aerosol samples with results depicting substantial fractions of tire wear in urban atmospheric environments.
Reuse Permissions
  • Downloads
    PDF (5.5 MB)

    Details

    Title
    • Microplastics in the Desert Southwest: Occurrence and Characterization In Atmospheric, Aquatic, and Terrestrial Environments
    Contributors
    Date Created
    2024
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2024
    • Field of study: Chemistry

    Machine-readable links