Description
Deforestation in the Amazon rainforest has the potential to have devastating effects on ecosystems on both a local and global scale, making it one of the most environmentally threatening phenomena occurring today. In order to minimize deforestation in the Ama- zon and its

Deforestation in the Amazon rainforest has the potential to have devastating effects on ecosystems on both a local and global scale, making it one of the most environmentally threatening phenomena occurring today. In order to minimize deforestation in the Ama- zon and its consequences, it is helpful to analyze its occurrence using machine learning architectures such as the U-Net. The U-Net is a type of Fully Convolutional Network that has shown significant capability in performing semantic segmentation. It is built upon a symmetric series of downsampling and upsampling layers that propagate feature infor- mation into higher spatial resolutions, allowing for the precise identification of features on the pixel scale. Such an architecture is well-suited for identifying features in satellite imagery. In this thesis, we construct and train a U-Net to identify deforested areas in satellite imagery of the Amazon through semantic segmentation.
Reuse Permissions
  • 7.09 MB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • A U-Net to Identify Deforested Areas in Satellite Imagery of the Amazon
    Contributors
    Date Created
    2024-05
    Resource Type
  • Text
  • Machine-readable links