Description
Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however,

Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however, have several challenges that need to be addressed to realize their gains in practice. First, they need to deploy large antenna arrays and use narrow beams to guarantee sufficient receive power. Adjusting the narrow beams of the large antenna arrays incurs massive beam training overhead. Second, the sensitivity to blockages is a key challenge for mmWave and THz networks. Since these networks mainly rely on line-of-sight (LOS) links, sudden link blockages highly threaten the reliability of the networks. Further, when the LOS link is blocked, the network typically needs to hand off the user to another LOS basestation, which may incur critical time latency, especially if a search over a large codebook of narrow beams is needed. A promising way to tackle both these challenges lies in leveraging additional side information such as visual, LiDAR, radar, and position data. These sensors provide rich information about the wireless environment, which can be utilized for fast beam and blockage prediction. This dissertation presents a machine-learning framework for sensing-aided beam and blockage prediction. In particular, for beam prediction, this work proposes to utilize visual and positional data to predict the optimal beam indices. For the first time, this work investigates the sensing-aided beam prediction task in a real-world vehicle-to-infrastructure and drone communication scenario. Similarly, for blockage prediction, this dissertation proposes a multi-modal wireless communication solution that utilizes bimodal machine learning to perform proactive blockage prediction and user hand-off. Evaluations on both real-world and synthetic datasets illustrate the promising performance of the proposed solutions and highlight their potential for next-generation communication and sensing systems.
Reuse Permissions
  • 9.84 MB application/pdf

    Download restricted until 2026-05-01.

    Details

    Title
    • Sensing for Wireless Communication: From Theory to Reality
    Contributors
    Date Created
    2024
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2024
    • Field of study: Electrical Engineering

    Machine-readable links