Full metadata
Title
The Development of Novel Methods for Assessing Human Olfaction Ability and the Odor Intensity of Samples
Description
Olfactory perception is a complex and multifaceted process that involves the detection of volatile organic compounds by olfactory receptor neurons in the nasal neuroepithelium. Different odorants can elicit different perceived intensities at the same concentration, while direct intensity ratings are vulnerable to framing effects and inconsistent scale usage. Odor perception is genetically determined, with each individual having a unique olfaction "footprint" and sensitivity levels. Genetic factors, age, gender, race, and environmental factors influence olfactory acuity. The olfactory system's complexity makes it challenging to create a standardized comparison system for olfactory perception tests. The COVID-19 pandemic has underscored the importance of olfactory dysfunction, particularly the loss of smell and taste as common symptoms. Research has demonstrated the widespread occurrence of olfactory impairment in various populations, often stemming from post-viral origins, which is the leading cause of permanent smell loss. Utilizing quantitative ranking on a qualitative scale enhances the precision and accuracy when evaluating and drawing conclusions about odor perception and how to mitigate problems caused by external factors. Pairwise comparisons enhance the accuracy and consistency of results and provide a more intuitive way of comparing items. Such ranking techniques can lead to early detection of olfactory disorders and improved diagnostic tools. The COVID-19 pandemic has shed light on the significance of olfactory dysfunction, emphasizing the need for further research and standardized testing methods in olfactory perception.
Date Created
2023
Contributors
- Darden, Jaelyn (Author)
- Smith, Brian (Thesis advisor)
- Gerkin, Richard (Thesis advisor)
- Spackman, Christy (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
55 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.191036
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2023
Field of study: Biology
System Created
- 2023-12-14 02:16:13
System Modified
- 2023-12-14 02:16:18
- 11 months 1 week ago
Additional Formats