Description
Modern Complementary-Metal-Oxide-Semiconductor (CMOS) technologies are facing critical challenges: scaling channel lengths below ~10 nm is hindered by significant transport degradation as bulk semiconductors (i.e., silicon) are thinned down, energy consumption is affected by short-channel effects and off-state leakage, and conventional von Neumann computing architectures face serious bottlenecks affecting performance and efficiency (energy consumption and throughput). Neuromorhic and/or in-memory computing architectures using resistive random-access memory (RRAM) crossbar arrays are promising candidates to mitigate these bottlenecks and to circumvent CMOS scaling challenges. Recently, emerging two dimensional materials (2DMs) are investigated towards ultra-scaled CMOS devices, as well as towards non-volatile memory and neuromorphic devices with potential improvements in scalability, power consumption, switching speed, and compatibility with CMOS integration.The first part of this dissertation presents contributions towards high-yield 2DMs field- effect-transistors (FETs) fabrication using wafer-scale chemical vapor deposition (CVD) monolayer MoS2. This work provides valuable insight about metal contact processing, including extraction of Schottky barrier heights and Fermi-level pinning effects, for next- generation integrated electronic systems based on CVD-grown 2DMs.
The second part introduces wafer-scale fabrication of memristor arrays with CVD- grown hexagonal boron nitride (h-BN) as the active switching layer. This work establishes the multi-state analog pulse programmability and presents the first experimental demonstration of dot-product computation and implementation of multi-variable stochastic linear regression on h-BN memristor hardware. This work extends beyond previous demonstrations of non-volatile resistive switching (NVRS) behavior in isolated h-BN memristors and paves the way for more sophisticated demonstrations of machine learning applications based on 2DMs.
Finally, combining the benefits of CVD-grown 2DMs and graphene edge contacts, vertical h-BN memristors with ultra-small active areas are introduced through this research. These devices achieve low operating currents (high resistance), large RHRS/RLRS ratio, and enable three-dimensional (3D) integration (vertical stacking) for ultimate RRAM scalability. Moreover, they facilitate studying fundamental NVRS mechanisms of single conductive nano-filaments (CNFs) which was previously unattainable in planar devices. This way, single quantum step in conductance was experimentally observed, consistent with theorized atomically-constrained CNFs behavior associated with potential improvements in stability of NVRS operation. This is supported by measured improvements in retention of quantized conductance compared to other non-2DMs filamentary-based memristors.
Details
Title
- Two Dimensional Materials Based Memristors for In-memory Computing and Neuromorphic Computing
Contributors
- Xie, Jing (Author)
- Sanchez Esqueda, Ivan (Thesis advisor)
- Fu, Houqiang (Committee member)
- Kozicki, Michael (Committee member)
- Marinella, Matthew (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2023
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2023
- Field of study: Electrical Engineering