190801-Thumbnail Image.png
Description
This work uses Arizona State University’s (ASU) newly developed high-speed vehicle stability and control screening methodologies to reverse-engineer famous United States Air Force (USAF) flight tests from the 1950s and 1960s. This thesis analyzes the root cause of Chuck Yeager's

This work uses Arizona State University’s (ASU) newly developed high-speed vehicle stability and control screening methodologies to reverse-engineer famous United States Air Force (USAF) flight tests from the 1950s and 1960s. This thesis analyzes the root cause of Chuck Yeager's fateful 1953 supersonic spin in the Bell X-1A to become the "Fastest Man Alive". This thesis then takes a look back at Neil Armstrong's inadvertent atmospheric skip in the North American X-15 and his subsequent hypersonic flight months later. The fundamental flying qualities assessment shown in this work begins with calculating rigid-body frequencies and damping ratios of an aircraft to Military Standard (MIL) requirements, and uses these to create a full, classical stability and control analysis of a high-speed vehicle. Through reverse engineering the flight envelopes and missions for the above aircraft, it appears that the near-disasters of each flight were due to a confluence of then overlooked, yet fundamental, aerodynamic instabilities.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Fundamental Assessment of High-Speed Aircraft Stability and Control from Historic Flight Tests
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2023
    • Field of study: Aerospace Engineering

    Machine-readable links