Full metadata
Title
Metallurgical-grade Silicon Electrorefining in Reusable Oxygen-Free CaCl2-CaF2 Molten Salt
Description
The silicon-based solar cell has been extensively deployed in photovoltaic industry and plays an important role in renewable energy industries. A more energy-efficient, environment-harmless and eco-friendly silicon production technique is required for price-competitive solar energy harvesting. Silicon electrorefining in molten salt is promising for the ultrapure solar-grade Si production. To avoid using highly corrosive fluoride salt, CaCl2-based salt is widely employed for silicon electroreduction. For Si electroreduction in CaCl2-based salt, CaO is usually added to enhance the solubility of SiO2. However, the existence of oxygen in molten salt could result in system corrosion, anode passivation and the co-deposition of secondary phases such as CaSiO3 and SiO2 at the cathode. This research focuses on the development of reusable oxygen-free CaCl2-based molten salt for solar-grade silicon electrorefining. A new multi-potential electropurification process has been proposed and proven to be more effective in impurities removal. The as-received salt and the salt after electrorefining have been electropurified. The inductively-coupled plasma mass spectrometry and cyclic voltammetry have been utilized to determine the impurities removal of electropurification. The salt after silicon electrorefining has been regenerated to its original purity level before by the multi-potential electropurification process, demonstrating the feasibility of a reusable salt by electropurification. In an oxygen-free CaCl2-based salt without silicon precursor, the silicon dissolved from the silicon anode can be successfully deposited at the cathode. The silicon anode has been operated for more than 50 hours without passivation in the oxygen-free system. Silicon ions start to be deposited after 0.17 g of silicon has been dissolved into the salt from the silicon anode. A 180 µm deposit with a silver-luster surface was obtained at the cathode. The main impurities in the silicon anode such as aluminum, iron and titanium were not found in the silicon deposits. No oxygen-containing secondary phases are detected in the silicon deposits. These results confirm the feasibility of silicon electrorefining in the oxygen-free CaCl2-based salt.
Date Created
2023
Contributors
- Tseng, Mao-Feng (Author)
- Tao, Meng (Thesis advisor)
- Kannan, Arunachala Mada (Committee member)
- Mu, Linqin (Committee member)
- Goryll, Michael (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
84 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.189408
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Electrical Engineering
System Created
- 2023-08-28 05:22:21
System Modified
- 2023-08-28 05:22:26
- 1 year 2 months ago
Additional Formats