189341-Thumbnail Image.png
Description
The construction industry has struggled with a disappointing safety record, with workers often failing to identify hazards on construction sites. While virtual reality (VR) training has shown promise in improving hazard recognition skills, it is essential to address not only

The construction industry has struggled with a disappointing safety record, with workers often failing to identify hazards on construction sites. While virtual reality (VR) training has shown promise in improving hazard recognition skills, it is essential to address not only the ability to identify hazards but also the factors influencing workers' decision to report them. Research has revealed that workers often fail to recognize hazards when they perceive them as low-risk, leading to unreported hazards and persistent safety risks. Anticipatory emotions play a crucial role in driving risk aversion, but construction novices lack the emotional experiences necessary for developing such anticipatory emotions. Consequently, they may engage in careless and risk-friendly behavior. To address this issue, hazard recognition training should incorporate immersive and emotionally arousing VR experiences. This dissertation focuses on the development of emotionally arousing and realistic construction-specific simulations to assess their impact on construction novices. The research explores the aspects of a simulation that facilitate emotional arousal and identifies features that enhance the sense of presence for construction practitioners within a virtual construction environment. Subsequently, the developed VR experience is tested on construction novices. The results indicate that the VR experience, based on the findings of this research, effectively elicits significant arousal in participants, as evidenced by galvanic skin response (GSR) data. Thematic analysis of participant feedback further supports the physiological data, with participants reporting a realistic and emotional experience that immersed them in hazardous conditions on a construction site. Ultimately, this research contributes by identifying the crucial aspects necessary for developing construction-specific VR experiences that elicit arousal from participants, ensuring an immersive and emotionally engaging hazard recognition training. By incorporating such training methods, the construction industry can improve workers' hazard identification and reporting behaviors, thereby enhancing overall safety in construction sites.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Development of Realistic and Emotional Virtual Reality for Construction Safety Training
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Construction Management

    Machine-readable links