Full metadata
Title
Module Level Power Electronics and Photovoltaic Modules: Thermal Reliability Evaluation
Description
This is a two-part thesis.Part-I:
This work investigated the long-term reliability of a statistically significant number of two different commercial module-level power electronics (MLPE) devices using two input power profiles at high temperatures to estimate their reliability and service life in field-use conditions. Microinverters underwent a period of 15,000 accelerated stress hours, whereas the power optimizers underwent a period of 6,400 accelerated stress hours. None of the MLPE devices failed during the accelerated test; however, the optimizers degraded by about 1% in output efficiency. Based on their accelerated stress temperatures, the estimated field equivalent service life approximated using the Arrhenius model ranges between 24-48 years for microinverters and 39-73 years for optimizers, with a reliability of 74% and a lower one-sided confidence level of 95%. Furthermore, using the Weibull distribution model, the reliability and service lifetimes of MLPE devices are statistically analyzed. MLPE lifetimes estimated using Weibull slope and shape parameters with a 95% lower one-sided confidence level indicate a similar, or possibly exceeding, the 25-year lifetime of the associated photovoltaic (PV) modules. Part–II:This study investigated the impact of the hotspot stress test on glass-backsheet and glass-glass modules. Before the hotspot testing, both modules were pre-stressed using 600 thermal cycles (TC600) to represent decades of field-exposed modules experiencing hotspot effects in field-use conditions. The glass-glass module reached a hotspot temperature of nearly 200°C, whereas the glass-backsheet module's maximum hotspot temperature was almost 150°C. After the hotspot experiment, electroluminescence imaging showed that most of the cells in the glass-glass module appeared to have experienced significant damage. In contrast, the stressed cells in the glass-backsheet module appeared to have experienced insignificant damage. After the sequential stress testing (hotspot testing after TC600), the glass-glass module degraded by nearly 8.3% in maximum power, whereas the glass-backsheet module experienced 1.3% degradation. This study also incorporated hotspot endurance in fresh (without being subjected to prior TC600) glass-glass and glass-backsheet modules. The test outcome demonstrated that both module types exhibited marginal maximum power loss.
Date Created
2023
Contributors
- Afridi, Muhammad Zain Ul Abideen (Author)
- Tamizhmani, Govindasamy (Thesis advisor)
- Kiaei, Sayfe (Thesis advisor)
- Bakkaloglu, Bertan (Committee member)
- Flicker, Jack (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
192 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.189211
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Electrical Engineering
System Created
- 2023-08-28 04:43:00
System Modified
- 2023-08-28 04:43:05
- 1 year 2 months ago
Additional Formats