Full metadata
Title
How Will Agrochemical Exposure and Climatic Warming Affect Honey Bee Morphology, Foraging Performance, and Heat and Water Balance During Flight?
Description
The alarming decline of insect pollinators is due in part to agrochemical exposure and climate warming. This thesis focuses on understanding how exposure to a commonly used fungicide and high air temperature affect the flight behavior and physiology of the very important commercial pollinator, Apis mellifera. I found that honey bees reared on pollen contaminated with field-realistic levels of a fungicide (Pristine®) commonly applied to almond blossoms before pollination had smaller thoraxes, possibly due to inhibition of protein digestion, plausibly reducing flight capability. By flying unloaded bees in low density air to elicit maximal performance, I found that consumption of high doses of fungicide during development inhibited maximal flight performance, but consumption of field-realistic doses did not.
To understand climatic-warming effects on honey bees, I flew unloaded foragers at various air densities and temperatures to assess the effects of flight muscle temperature (29 to 44°C) on maximal aerobic metabolism. Flight metabolic rate peaked at a muscle temperature of 39°C and decreased by ~2% per degree below and ~5% per degree above this optimum. Carrying nectar loads increased flight muscle temperatures and flight metabolism of foragers flying at air temperatures of 20 or 30°C. Yet, remarkably, bees flying at 40°C were able to carry loads without heating up or increasing metabolic rate. Bees flying at 40°C increased evaporative cooling and decreased metabolic heat production to thermoregulate. High speed video revealed that bees flying at 40°C air temperature lowered their wing beat frequency while increasing stroke amplitude, increasing flight efficiency. My data also suggests that cooler bees use wing kinematic strategies that increase flight stability and maneuverability while generating excess heat that warms their flight muscle toward optimum. High water loss rates during flight likely limit foraging in dry air temperatures above 46°C, suggesting that CTmax measures of resting honey bees significantly overestimate when high air temperature will negatively impact flight and foraging.
Date Created
2023
Contributors
- Glass, Jordan Robert (Author)
- Harrison, Jon F. (Thesis advisor)
- Denardo, Dale F. (Committee member)
- Dudley, Robert (Committee member)
- Fewell, Jennifer H. (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
134 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187809
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Biology
System Created
- 2023-06-07 12:34:43
System Modified
- 2023-06-07 12:34:49
- 1 year 5 months ago
Additional Formats