Description
The objective of this thesis is to propose two novel interval observer designs for different classes of linear and hybrid systems with nonlinear observations. The first part of the thesis presents a novel interval observer design for uncertain locally Lipschitz continuous-time (CT) and discrete-time (DT) systems with noisy nonlinear observations. The observer is constructed using mixed-monotone decompositions, which ensures correctness and positivity without additional constraints/assumptions. The proposed design also involves additional degrees of freedom that may improve the performance of the observer design. The proposed observer is input-to-state stable (ISS) and minimizes the L1-gain of the observer error system with respect to the uncertainties. The observer gains are computed using mixed-integer (linear) programs. The second part of the thesis addresses the problem of designing a novel asymptotically stable interval estimator design for hybrid systems with nonlinear dynamics and observations under the assumption of known jump times. The proposed architecture leverages mixed-monotone decompositions to construct a hybrid interval observer that is guaranteed to frame the true states. Moreover, using common Lyapunov analysis and the positive/cooperative property of the error dynamics, two approaches were proposed for constructing the observer gains to achieve uniform asymptotic stability of the error system based on mixed-integer semidefinite and linear programs, and additional degrees of freedom are incorporated to provide potential advantages similar to coordinate transformations. The effectiveness of both observer designs is demonstrated through simulation examples.
Details
Title
- Robust Interval Observer Design for Uncertain Nonlinear and Hybrid Dynamical Systems
Contributors
- Daddala, Sai Praveen Praveen (Author)
- Yong, Sze Zheng (Thesis advisor)
- Tsakalis, Konstantinos (Thesis advisor)
- Lee, Hyunglae (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2023
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2023
- Field of study: Electrical Engineering