Full metadata
Title
Distributed Coherent Mesh Beamforming: Algorithms and Implementation
Description
In this dissertation, I implement and demonstrate a distributed coherent mesh beamforming system, for wireless communications, that provides increased range, data rate, and robustness to interference. By using one or multiple distributed, locally-coherent meshes as antenna arrays, I develop an approach that realizes a performance improvement, related to the number of mesh elements, in signal-to-noise ratio over a traditional single-antenna to single-antenna link without interference. I further demonstrate that in the presence of interference, the signal-to-interference-plus-noise ratio improvement is significantly greater for a wide range of environments. I also discuss key performance bounds that drive system design decisions as well as techniques for robust distributed adaptive beamformer construction. I develop and implement an over-the-air distributed time and frequency synchronization algorithm to enable distributed coherence on software-defined radios. Finally, I implement the distributed coherent mesh beamforming system over-the-air on a network of software-defined radios and demonstrate both simulated and experimental results both with and without interference that achieve performance approaching the theoretical bounds.
Date Created
2023
Contributors
- Holtom, Jacob (Author)
- Bliss, Daniel W (Thesis advisor)
- Alkhateeb, Ahmed (Committee member)
- Herschfelt, Andrew (Committee member)
- Michelusi, Nicolò (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
128 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187540
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Electrical Engineering
System Created
- 2023-06-07 11:34:23
System Modified
- 2023-06-07 11:34:28
- 1 year 5 months ago
Additional Formats