187533-Thumbnail Image.png
Description
Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease

Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease and efficiency of CRISPR-Cas9 systems has enabled numerous technologies and DNA manipulations. Genome engineering in human cell lines is centered around the study of genetic contribution to disease phenotypes. However, canonical CRISPR-Cas9 systems are largely reliant on double stranded DNA breaks (DSBs). DSBs can induce unintended genomic changes including deletions and complex rearrangements. Likewise, DSBs can induce apoptosis and cell cycle arrest confounding applications of Cas9-based systems for disease modeling. Base editors are a novel class of nicking Cas9 engineered with a cytidine or adenosine deaminase. Base editors can install single letter DNA edits without DSBs. However, detecting single letter DNA edits is cumbersome, requiring onerous DNA isolation and sequencing, hampering experimental throughput. This document describes the creation of a fluorescent reporter system to detect Cytosine-to-Thymine (C-to-T) base editing. The fluorescent reporter utilizes an engineered blue fluorescent protein (BFP) that is converted to green fluorescent protein (GFP) upon targeted C-to-T conversion. The BFP-to-GFP conversion enables the creation of a strategy to isolate edited cell populations, termed Transient Reporter for Editing Enrichment (TREE). TREE increases the ease of optimizing base editor designs and assists in editing cell types recalcitrant to DNA editing. More recently, Prime editing has been demonstrated to introduce user defined DNA edits without the need for DSBs and donor DNA. Prime editing requires specialized prime editing guide RNAs (pegRNAs). pegRNAs are however difficult to manually design. This document describes the creation of a software tool: Prime Induced Nucleotide Engineering Creator of New Edits (PINE-CONE). PINE-CONE rapidly designs pegRNAs based off basic edit information and will assist with synthetic biology and biomedical research.
Reuse Permissions


  • Download restricted.
    Download count: 2

    Details

    Title
    • Engineering CRISPR Systems for Synthetic Biology
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Biology

    Machine-readable links