187426-Thumbnail Image.png
Description
Code Generation is a task that has gained rapid progress in Natural Language Processing (NLP) research. This thesis focuses on the text-to-Structured Query Language (SQL) task, where the input is a question about a specific database and the output is

Code Generation is a task that has gained rapid progress in Natural Language Processing (NLP) research. This thesis focuses on the text-to-Structured Query Language (SQL) task, where the input is a question about a specific database and the output is the SQL that when executed will return the desired answer. The data creation process bottlenecks current text-to-SQL datasets. The technical knowledge required to understand and create SQL makes crowd-sourcing a dataset expensive and time-consuming. Thus, existing datasets do not provide a robust enough training set for state-of-the-art semantic parsing models. This thesis outlines my technique for generating a text-to-SQL dataset using GPT3 and prompt engineering techniques. My approach entails providing the Generative Pretrained Transformer 3 model (GPT-3) with particular instructions to build a rigorous text-to-SQL dataset. In this paper, I show that the created pairs have excellent quality and diversity, and when utilized as training data, they can enhance the accuracy of SQL generation models. I expect that my method will be of interest to academics in the disciplines of NLP because it can considerably reduce the time, effort, and cost necessary to produce large, high-quality text-to-SQL datasets. Furthermore, my approach can be extended to other tasks and domains to alleviate the burden of curating human-annotated data.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Using Language Models to Generate Text-to-SQL Training Data An Approach to Improve Performance of a Text-to-SQL Parser
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2023
    • Field of study: Computer Science

    Machine-readable links