187360-Thumbnail Image.png
Description
Metal-Oxide-Semiconductor (MOS) is essential to modern VLSI devices. In the past decades, a wealth of literature has been created to understand the impact of the radiation-induced charges on the devices, i.e., the creation of electron-hole pairs in the oxide layer

Metal-Oxide-Semiconductor (MOS) is essential to modern VLSI devices. In the past decades, a wealth of literature has been created to understand the impact of the radiation-induced charges on the devices, i.e., the creation of electron-hole pairs in the oxide layer which is the most sensitive part of MOS structure to the radiation effect. In this work, both MOS and MNOS devices were fabricated at ASU NanoFab to study the total ionizing dose effect using capacitance-voltage (C-V) electrical characterization by observing the direction and amounts of the shift in C-V curves and electron holography observation to directly image the charge buildup at the irradiated oxide film of the oxide-only MOS device.C-V measurements revealed the C-V curves shifted to the left after irradiation (with a positive bias applied) because of the net positive charges trapped at the oxide layer for the oxide-only sample. On the other hand, for nitride/oxide samples with positive biased during irradiation, the C-V curve shifted to the right due to the net negative charges trapped at the oxide layer. It was also observed that the C-V curve has less shift in voltage for MNOS than MOS devices after irradiation due to the less charge buildup after irradiation. Off-axis electron holography was performed to map the charge distribution across the MOSCAP sample. Compared with both pre-and post-irradiated samples, a larger potential drop at the Si/SiO2 was noticed in post-irradiation samples, which indicates the presence of greater amounts of positive charges that buildup the Si/SiO2 interface after the TID exposure. TCAD modeling was used to extract the density of charges accumulated near the SiO2/Si and SiO2/ Metal interface by matching the simulation results to the potential data from holography. The increase of near-interface positive charges in post-irradiated samples is consistent with the C-V results.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Analyze of Total Ionizing Dose Effect in MOS/MNOS Capacitors
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2023
    • Field of study: Materials Science and Engineering

    Machine-readable links