Although nitrogen is the dominant element in Earth’s atmosphere, it is depleted in the bulk silicate Earth (relative to expected volatile abundances established by carbonaceous chondrites). To resolve this inconsistency, it has been hypothesized that this “missing nitrogen” may actually be stored within the Earth’s deep interior. In this work, we use multi-anvil press experiments to synthesize solid solution mixtures of the mantle transition zone mineral wadsleyite (Mg2SiO4) and silicon nitride (Si3N4). Successful synthesis of a 90% Si3N4, 10% Mg2SiO4 solid solution implies that nitrogen may not be sequestered within the most abundant mineral phases in the Earth’s mantle. Instead, nitrogen-rich accessory phases may hold the key to studying nitrogen storage within the deep interior. Ultimately, quantifying the amount of nitrogen within the mantle will further our understanding of the N cycle, which is vital to maintaining planetary habitability. Similar N cycling processes may be occurring on other rocky bodies; therefore, studying nitrogen storage may be an important part of determining habitability conditions on other worlds, both within in our solar system and beyond.
Details
- A Potential Mechanism for Nitrogen Storage in the Earth's Mantle Transition Zone
- Ravikumar, Shradhanjli (Author)
- Shim, Dan (Thesis director)
- Sharp, Thomas (Committee member)
- Hervig, Richard (Committee member)
- Barrett, The Honors College (Contributor)
- School of Earth and Space Exploration (Contributor)