Full metadata
Traumatic brain injury (TBI), a neurological condition that negatively affects neural capabilities, occurs when a blunt trauma impacts the head. Following the initial injury that immediately impacts neural cell function and survival, a series of secondary injury events lead to substantial sustained inflammation for weeks to years post-injury. To develop TBI treatments that may stimulate regenerative processes, a novel drug delivery system that efficiently delivers the appropriate drug/payload to injured tissue is crucial. Hyaluronic acid (HA) hydrogels are attractive when developing a biomaterial for tissue reparation and regeneration. HA is a natural polymer with physicochemical properties that can be tuned to match the properties of the extracellular matrix (ECM) of the many tissues including the central nervous system (CNS). Here, the project objective was to develop a HA hydrogel system for local delivery of a biological payload; this objective was completed by employing a composite system with two parts. The first part is an injectable, shear-thinning bulk hydrogel, and the second is microgels for loading biological payloads. The bulk hydrogel was composed of cyclodextrin modified HA (Cd-HA) and adamantane modified HA (Ad-HA) that give rise to guest-host interactions that facilitate physical crosslinking. The microgel, composed of norbornene-HA (Nor-HA) and sulfated-HA, crosslink via chemical crosslinks upon activation of a UV photoinitiator. The sulfated-HA microgels facilitate loading of biological payloads by mimicking heparin binding sites via the conjugated sulfated group. Neuregulin I, an epidermal growth factor with neuroprotective properties, is one such protein with a heparin binding domain that may be retained in the sulfated-HA microgels. Specifically, the project focused on mechanical testing of this composite microgel/hydrogel system and also developing protein affinity assays.
- Kylat, Anna (Author)
- Stabenfeldt, Sarah (Thesis director)
- Holloway, Julianne (Committee member)
- Jensen, Gregory (Committee member)
- Barrett, The Honors College (Contributor)
- School of Mathematical and Statistical Sciences (Contributor)
- Harrington Bioengineering Program (Contributor)
- 2023-04-13 04:23:57
- 2023-04-19 04:58:19
- 1 year 7 months ago