Description

For my thesis, I conducted a study on a healthy pediatric cohort to investigate how DNA methylation of genes related to myelin may predict total white matter volume in a healthy pediatric cohort. The relatively new field of neuroimaging epigenetics

For my thesis, I conducted a study on a healthy pediatric cohort to investigate how DNA methylation of genes related to myelin may predict total white matter volume in a healthy pediatric cohort. The relatively new field of neuroimaging epigenetics investigates how methylation of genes in peripheral tissue samples is related to certain structural or functional features of the brain, as measured by neuroimaging data. Research has already demonstrated that methylation of genes in peripheral tissues is related to a variety of brain disorders. We hypothesized that methylation of myelin-related genes as measured in saliva samples would predict total white matter volume in a healthy pediatric cohort. After processing DNA methylation data from saliva samples from participants, multiple linear regressions were ran to determine if DNA methylation of myelin related genes was related to total white matter volume, as measured by data from structural MRIs. Results showed that these genes, which included MOG, MBP, and MYRF, significantly predicted total white matter volume. Two genes that were significant in our results have been previously shown to produce proteins that are essential to the structure of myelin.

Reuse Permissions
  • Download count: 1

    Details

    Title
    • What can the peripheral epigenome tell us about the brain? White matter volume in a healthy pediatric population
    Contributors
    Date Created
    2023-05
    Resource Type
  • Text
  • Machine-readable links