Description
This thesis presents a code generation tool to improve the programmability of systolic array processors such as the Domain Adaptive Processor (DAP) that was designed by researchers at the University of Michigan for wireless communication workloads. Unlike application-specific integrated circuits, DAP aims to achieve high performance without trading off much on programmability and reconfigurability. The structure of a typical DAP code for each Processing Element (PE) is very different from any other programming language format. As a result, writing code for DAP requires the programmer to acquire processor-specific knowledge including configuration rules, cycle accurate execution state for memory and datapath components within each PE, etc. Each code must be carefully handcrafted to meet the strict timing and resource constraints, leading to very long programming times and low productivity. In this thesis, a code generation and optimization tool is introduced to improve the programmability of DAP and make code development easier. The tool consists of a configuration code generator, optimizer, and a scheduler. An Instruction Set Architecture (ISA) has been designed specifically for DAP. The programmer writes the assembly code for each PE using the DAP ISA. The assembly code is then translated into a low-level configuration code. This configuration code undergoes several optimizations passes. Level 1 (L1) optimization handles instruction redundancy and performs loop optimizations through code movement. The Level 2 (L2) optimization performs instruction-level parallelism. Use of L1 and L2 optimization passes result in a code that has fewer instructions and requires fewer cycles. In addition, a scheduling tool has been introduced which performs final timing adjustments on the code to match the input data rate.
Download count: 1
Details
Title
- Improving the Programmability of a Systolic Array Processor
Contributors
- Vipperla, Anish (Author)
- Chakrabarti, Chaitali (Thesis advisor)
- Bliss, Daniel (Committee member)
- Akoglu, Ali (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Subjects
Resource Type
Collections this item is in
Note
-
Partial requirement for: M.S., Arizona State University, 2022
-
Field of study: Electrical Engineering